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Abstract  

Cloud computing provides resources to its consumers as a service. The cloud computing paradigm 

offers dynamic services by providing virtualized resources via the internet for enabling applications, 

and these services are provided by large-scale data centers known as clouds. Cloud computing is 

entirely reliant on the internet to provide its services to consumers. Cloud computing offers several 

advantages, including the fact that users only pay for what they use weekly, monthly, or yearly, that 

anybody with an internet connection may use the cloud, and that there is no need to purchase resources, 

hardware, or software on their own. This paper proposes an efficient task scheduling algorithm based 

on the Jaya algorithm for the cloud computing environment. We evaluate the performance of our 

method by applying it to three instances. The recommended technique produced the optimal solution in 

makespan, speedup, efficiency, and throughput, according to the findings. 
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1. Introduction 

Task scheduling in heterogeneous computing systems linked by high-speed networks has received a lot 

of attention. Such approaches promise the quick processing of computationally heavy applications with 

a wide range of calculation requirements. A significant application can be divided into several smaller 

subtasks before parallel processing. These smaller subtasks usually involve dependencies that indicate 

precedence restrictions, in which the outcomes of other subtasks are necessary before a particular 

subtask may be done. Decomposing a computation into smaller subtasks and performing the subtasks 

on several processors might lower the computation’s overall execution time, i.e., the makespan. As a 

result, a task scheduling algorithm usually schedules all subtasks on a given number of available 
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processors to minimize makespan while respecting precedence restrictions. The development of task 

scheduling algorithms that allocate subtasks of an application to processors is a difficulty in 

heterogeneous computing systems. As a result, various techniques for minimizing makespan for 

parallelizing subtasks with precedence connections have been presented. The precedence connections 

are represented as a directed acyclic graph (DAG) with vertices representing computations and directed 

edges describing dependencies between those vertices. DAGs have been demonstrated to be expressive 

for various applications (Xu, Li, Hu, & Li, 2014). This paper introduced an efficient algorithm based on 

the Jaya algorithm called the efficient Jaya algorithm (EJA) to lower the makespan and optimize the 

speedup, efficiency, and throughput to handle the task scheduling problem successfully. 

The paper is organized as follows: The notations are presented in section 2. Related work is presented 

in Section 3. The problem description is given in Section 4. The Jaya algorithm is given in Section 5. 

Section 6 describes the EJA approach. The evaluation of the proposed algorithm is presented in section 

7. Section 8 concludes and offers future work. 

 

2. Notation  

 

3. Related Work 

A heuristic-based task scheduling approach in parallel and distributed heterogeneous computing 

systems generally consists of two phases: job prioritization and processor selection. Varying priority 

produces different makespan on a heterogeneous computing system in a heuristic-based job scheduling 

method. As a result, an intelligent scheduling algorithm should be able to give priority to each subtask 

based on the resources required to reduce makespan. This work (Xu, Li, Hu, & Li, 2014) proposes a job 

scheduling approach for heterogeneous computing systems based on a multiple priority queues genetic 

algorithm (MPQGA). The primary concept behind our method is to use the benefits of both 

evolutionary and heuristic algorithms while avoiding their downsides. The suggested technique uses a 

GRT It refers to the graph of tasks 

TASi It refers to the task i 

VTMi It refers to the virtual machine i 

NVTM It refers to a virtual machine’s number 

NTAS It refers to the number of tasks 

COM_CO(TASi, TASj) It refers to the communication cost between TASi and TASj 

Sta_Time(TASi, VTMj) It refers to the start time of task i on a VTMj 

Fts_Time(TASi, VTMj) It refers to the  finish time of task i on a VTMj 

Rey_Time(VTMi) It refers to the VTM’s ready time i 

DALT It refers to a list of tasks arranged in topological order of DAG 

Data_Arr(TSi, VMj) It refers to the time of task’s i data arrival to VTMj 
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genetic algorithm (GA) approach to prioritize each subtask while searching for a solution for the 

task-to-processor mapping using a heuristic-based earliest completion time (EFT). The MPQGA 

approach also creates crossover, mutation, and fitness functions appropriate for directed acyclic graph 

(DAG) scheduling. 

Cloud computing provides resources to its consumers as a service. The cloud computing paradigm 

offers dynamic services by providing virtualized resources via the internet for enabling applications, 

and these services are provided by large-scale data centers known as clouds. Cloud computing is 

entirely reliant on the internet to provide its services to consumers. Cloud computing offers several 

advantages, including the fact that users only pay for what they use (weekly, monthly, or yearly), that 

anybody with an internet connection may use the cloud, and that there is no need to purchase resources 

(hardware, software) on their own. This study (June, 2014) introduces a novel approach, Hybrid 

enhanced particle swarm optimization with mutation crossover, to get the most out of resources. 

Optimized resource use is vital, and scheduling plays a significant role. 

Cloud computing has lately experienced rapid growth and has emerged as a commercial reality in 

information technology. Cloud computing is a supplement, consumption, and delivery model for 

internet-based Information Technology services charged per usage. The scheduling of cloud services 

influences the cost-benefit of this computing paradigm by service providers to users. Tasks should be 

scheduled efficiently in such a circumstance to decrease execution cost and time. In this research (Kaur, 

& Verma, 2012), the authors suggested a meta-heuristic-based scheduling method that reduces 

execution time and cost. An enhanced genetic algorithm is created by combining two existing 

scheduling methods for scheduling activities while considering their computational complexity and 

computing capability of processing elements. 

Due to the expansion of data centers’ size, complexity, and performance, client needs in execution time 

and throughput has become increasingly complicated. Against this backdrop, this paper introduces a 

new resource allocation model that improves task scheduling by combining a multi-objective 

optimization (MOO) and particle swarm optimization (PSO) technique. The authors create a novel 

multi-objective PSO (MOPSO) algorithm based on a unique ranking technique. This algorithm’s 

fundamental idea is that jobs are assigned to virtual machines to reduce waiting time and maximize 

system throughput (Alkayal, Jennings, & Abulkhair, 2016). 

When excellent efficiency is required, task scheduling is one of the essential concerns in heterogeneous 

contexts. Because task scheduling is a Nondeterministic Polynomial (NP)-hard issue, various 

evolutionary methods have been developed to address it. Because population-based algorithms have a 

slow convergence rate, they are combined with local search algorithms. Thus, in this study (Dordaie & 

Navimipour, 2018), a hybrid particle swarm optimization and hill-climbing method are suggested to 

improve the task scheduling makespan. 
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4. Problem Description 

In cloud computing, task scheduling is represented as a graph with NTAS tasks (TAS1, TAS2, TAS3, ..., 

TASNTAS). Each node (task) with GRT and E-directed edges represents a subset of the tasks’ requests 

(Hamed & Alkinani, 2021). Each node (task) represents an instruction that may be executed 

sequentially on the same virtual machine as other instructions; it may have one or more inputs. The 

availability of the inputs triggers the execution of an exit or entry task. A partial request with a 

precedence constraint (TASi → TASj), i.e., TASi precedes TASj in the implementation process. The 

execution time of a task TASi is denoted by (TASi) weight. Let COM_CO(TASi, TASj) be the cost of 

communication of an edge, and it will be equal to zero if TASi and TASj are scheduled on the same 

virtual machine. Start and finish times are denoted by Sta_Time(TASi, VTMj) and Fts_Time(TASi, 

VTMj), respectively [6]. The Data_Arr of TASi at virtual machine VTMj is given by:  

Data_Arr(TASi. VTMj) = max{Fts_Time(TASk, VTMj) + COM_CO(TASi, TASk)}      (1) 

Where k = 1.2, ..., number of Parents  

The task scheduling problem in cloud computing may be defined as determining the best time to 

allocate or schedule the start times of the specified tasks on virtual machines. While maintaining 

precedence is restricted, the completion time (schedule length) and execution cost decrease. The 

completion time is defined as the schedule length or finishes time calculated as follows:  

Scheduled Length=max(Fts_Time(TASi, VTMj))                     (2) 

Fts_Time(TASi,VTMj)=Sta_Time(TASi,VTMj)+ WETij                  (3) 

Where i = 1.2. ...., NTAS, and j = 1,2, …NVTM  

Algorithm 1: To find the schedule length (Hamed & Alkinani, 2021) 

Input the schedule of tasks as shown in Table 1 

Rey_Time[VTMj] = 0   where     j = 1, 2,…NVTM. 

For i = 1 : NTAS 

{ 

       From DALT take the first task TASi to be executed and remove it from DALT. 

       For j = 1 : NVTM 

            { 

If TASi is scheduled to virtual machine VTMj 

                   Sta_Time(TASi,VTMj)=max{Ret_Time(VTMj),Data_Arr(TASi, VTMj)} 

Fts_Time(TASi, VTMj) = Sta_Time(TASi, VTMj) + WET(TASi, VTMj) 

Rey_Time(VTMj) = Fts_Time(TASi, VTMj)  

End If 

             } 

} 

Schedule length = max(Fts_Time) 
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5. Jaya Algorithm 

Let G(y) be the objective function that has to be minimized (or maximized). Assume that there are ‘m’ 

number of design variables (i.e. j=1,2,...,m) and ‘n’ number of possible solutions (i.e. population size, 

k=1,2,...,n) at any iteration i. Let the best candidate acquire the best value of G(y) (i.e., G(y)best) in all 

candidate solutions, and the worst candidate obtain the worst value of G(y) (i.e., G(y)worst) in all 

candidate solutions. If the value of the jth variable for the kth candidate during the ith iteration is Yj,k,i, 

then this value is updated according to the following Eq (4) (Venkata Rao, 2016). 

Y’j,k,i = Yj,k,i + ran1,j,i (Yj,best,i - │Yj,k,i│) - ran2,j,i (Yj,worst,i - │Yj,k,i│)            (4) 

where Yj,best,i is the variable j value for the best candidate and Yj,worst,i is the variable j value for the 

worst candidate Y’j,k,i is the updated value of Yj,k,i, and ran1,j,i and ran2,j,i are the two random values for 

the jth variable in the range [0, 1] during the ith iteration. The word "ran1,j,i ((Yj,best,i - Yj,k,i)" denotes the 

solution’s propensity to get closer to the best solution, whereas the term "- ran2,j,i (Yj,worst,i - Yj,k,i)" 

denotes the solution’s inclination to avoid the worst solution. If Y’j,k,i yields a superior function value, it 

is accepted. At the end of the iteration, all of the acceptable function values are kept, and these values 

form the input to the following iteration (Venkata Rao, 2016). 

Jaya algorithm 

Initialize population size, number of design variables, and termination criterion 

Iteration=1 

While (iteration <= termination criterion) 

        Identify the best  and the worst solutions in the population  

        Modify the solutions based on the best and the worst solutions by using Eq.(4) 

        If the solution of Y’j,k,i is better than Yj,k,i  

             Update the old solution with the new obtained solution 

        End if 

        Iteration =iteration +1 

End while 

 

6. The Proposed Algorithm 

Because it is evident that the vector representation in the Jaya algorithm is in continuous value form, 

we will utilize the five ways to transform these continuous values into discrete values. The first rule is 

the Smallest Position Value (SPV) (Dubey & Gupta, 2017), the second is the Largest Position Value 

(LPV) (Wang, Pan, & Tasgetiren, 2011), the third is the round nearest function, the fourth is the floor 

nearest function, and the fifth is the Ciel nearest function. Table 1 shows how we will utilize the 

modulus function with the number of virtual machines in the SPV and LPV to raise the result by one. 
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Table 1. Convert Continuous Values to Discrete Values 

Population 1.0 1.6 1.4 3.0 2.3 1.9 2.0 

SPV rule 1 3 2 6 7 5 4 

modulus with SPV and NVRM=3 2 1 3 1 2 3 2 

LPV rule 4 5 7 6 2 3 1 

modulus with LPV and NVRM=3 2 3 2 1 3 1 2 

round nearest function 1 2 1 3 2 2 2 

floor nearest function 1 1 1 3 2 1 2 

ceil nearest function 1 2 2 3 3 2 2 

 

Algorithm 2: The function that converts a continuous value to a discrete value 

Function convert_to_discrete (u) 

Rand=random number between   [1…5] 

If (Rand == 1) 

               Transform the continuous values by the SPV rule 

Else if (Rand == 2) 

               Transform the continuous values by the LPV rule 

Else if (Rand == 3) 

               Transform the continuous values by round the nearest function 

Else if (Rand == 4) 

               Transform the continuous values by the nearest function 

Else 

               Transform the continuous values by ceil nearest function 

End if  

End function 

 

Algorithm 3: EJA 

Input DAG with communication and computation cost  

Initialize population size, number of design variables, lower bound, upper bound, and termination 

criterion 

Initialize population by using population = lower bound + rand * (upper bound – lower bound) 

Convert the Initialize population by using Algorithm 2 

Calculate the schedule length by using Algorithm 1 

Iteration=1 

While (iteration <= termination criterion) 

Identify the best  and the worst solutions in the population 
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Modify the solutions based on the best and the worst solutions by using Eq.(4) 

Convert the obtained solution by using Algorithm 2 

Calculate the schedule length by using Algorithm 1 

If the solution of Y’j,k,i is better than Yj,k,i  

Update the old solution with the new obtained solution 

End if 

Iteration =iteration +1 

End while  

 

7. Evaluation of the EJA 

We demonstrate the EJA’s performance by applying it to three instances. The first scenario has ten tasks 

and three heterogeneous virtual machines, and the second scenario has ten tasks and three heterogeneous 

virtual machines. The third is made up of three heterogeneous virtual machines and eleven tasks. 

Speedup = min VTMj
 ( ∑

WETi,j 

schedule lengthTASi
 )                   (5) 

Efficiency = 
Speedup

NVTM
                            (6) 

Throughput = 
NTAS

Schedule Length
                        (7) 

7.1 Case 1 

In this case, the tasks {TAS1, TAS2, TAS3, TAS4, TAS5, TAS6, TAS7, TAS8, TAS9, TAS10} are executed 

on three heterogeneous virtual machines {VTM1, VTM2, VTM3}. The cost of executing each task on 

different virtual machines is shown in Table 2 (Younes, Ben Salah, Farag, Alghamdi, & Badawi, 2019). 

The schedule obtained by EJA is shown in Table 3. The results obtained by the EJA are compared with 

those obtained by the Whale Optimization Algorithm (WOA) (Thennarasu, Selvam, & Srihari, 2021), 

Gravitational Search Algorithm (GSA) (Biswas, Kuila, Ray, & Sarkar, 2019), and Hybrid Heuristic and 

Genetic-based scheduling task algorithm for heterogeneous computing (HHG) (Sulaiman, Halim, Lebbah, 

Waqas, & Tu, 2021). The results obtained by the EJA and WOA, GSA, and HHG are illustrated in Table 

4. The task priority of EJA {TAS1, TAS6, TAS4, TAS5, TAS2, TAS3, TAS8, TAS9, TAS7, TAS10}. Figure 

1, Figure 2, Figure 3, and Figure 4 represent the results obtained by the EJA, WOA, GSA, and HHG in 

terms of makespan, speedup, efficiency, and throughput. 
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Table 2. Computation Cost for Case 1 

TAS/ VTM VTM1 VTM2 VTM3 

TAS1 22 21 36 

TAS2 22 18 18 

TAS3 32 27 43 

TAS4 7 10 4 

TAS5 29 27 35 

TAS6 26 17 24 

TAS7 14 25 30 

TAS8 29 23 36 

TAS9 15 21 8 

TAS10 13 16 33 

 

Table 3. Schedule Obtained by EJA for Case 1 

 VTM1 VTM2 VTM3 

 Sta_Time Fts_Time Sta_Time Fts_Time Sta_Time Fts_Time 

TAS1 - - 0 21 - - 

TAS2 - - 21 39 - - 

TAS3 - - 39 66 - - 

TAS4 64 71 - - - - 

TAS5 - - - - 34 69 

TAS6 38 64 - - - - 

TAS7 - - 66 91 - - 

TAS8 71 100 - - - - 

TAS9 - - - - 78 86 

TAS10 100 113 - - - - 

 

Table 4. The Comparative Results for Case 1 

Algorithm Makespan 

WOA 122 

GSA 122 

HHG 117 

EJA 113 
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Figure 1. Comparison of Makespan for Case 1 

 

 

Figure 2. Comparison of Speedup for Case 1 

 

 

Figure 3. Comparison of Efficiency for Case 1 

 

 

Figure 4. Comparison of Throughput for Case 1 
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7.2 Case 2 

In this case, the tasks {TAS1, TAS2, TAS3, TAS4, TAS5, TAS6, TAS7, TAS8, TAS9, TAS10} are executed 

on three heterogeneous virtual machines {VTM1, VTM2, VTM3}. The cost of executing each task on 

different virtual machines is shown in Table 5 (Younes, Ben Salah, Farag, Alghamdi, & Badawi, 2019). 

The schedule obtained by EJA is shown in Table 6. The results obtained by the EJA are compared with 

those obtained by the Ant Colony Optimization (ACO) (Tawfeek, El-Sisi, Keshk, & Torkey, 2015), 

Heterogeneous Earliest Finish Time (HEFT) (Topcuoglu, Hariri, & Wu, 2002), and Critical Path on 

Processor (CPOP) (Topcuoglu, Hariri, & Wu, 2002). The results obtained by the EJA and ACO, HEFT, 

and CPOP are illustrated in Table 7. The task priority of EJA { TAS1, TAS4, TAS3, TAS2, TAS5, TAS6, 

TAS9, TAS8, TAS7, TAS10}. Figure 5, Figure 6, Figure 7, and Figure 8 represent the results obtained by 

the EJA, ACO, HEFT, and CPOP in terms of makespan, speedup, efficiency, and throughput. 

  

Table 5. Computation Cost for Case 1 

TAS/ VTM VTM1 VTM2 VTM3 

TAS1 14 16 9 

TAS2 13 19 18 

TAS3 11 13 19 

TAS4 13 8 17 

TAS5 12 13 10 

TAS6 13 16 9 

TAS7 7 15 11 

TAS8 5 11 14 

TAS9 18 12 20 

TAS10 21 7 16 

 

Table 6. Schedule Obtained by EJA for Case 2 

 VTM1 VTM2 VTM3 

 Sta_Time Fts_Time Sta_Time Fts_Time Sta_Time Fts_Time 

TAS1 - - - - 0 9 

TAS2 - - - - 9 27 

TAS3 21 32 - - - - 

TAS4 - - 18 26 - - 

TAS5 - - 26 39 - - 

TAS6 - - - - 27 36 

TAS7 32 39 - - - - 

TAS8 - - 55 66 - - 
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TAS9 - - 43 55 - - 

TAS10 - - 66 73 - - 

 

Table 7. The Comparative Results for Case 2 

Algorithm Makespan 

CPOP 86 

HEFT 80 

ACO 78 

EJA 73 

 

 

Figure 5. Comparison of Makespan for Case 2 

 

 

Figure 6. Comparison of Speedup for Case 2 

 

 

Figure 7. Comparison of Efficiency for Case 2 
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Figure 8. Comparison of Throughput for Case 2 

 

7.3 Case 3 

In this case, the tasks {TAS1, TAS2, TAS3, TAS4, TAS5, TAS6, TAS7, TAS8, TAS9, TAS10} are executed 

on three heterogeneous virtual machines {VTM1, VTM2, VTM3}. The cost of executing each task on 

different virtual machines is shown in Table 8 (Keshanchi, Souri, & Navimipour, 2017). The schedule 

obtained by EJA is shown in Table 9. The results obtained by the EJA are compared with those obtained 

by the Multiple Priority Queues and a Memetic Algorithm (MPQMA) (Keshanchi, Souri, & Navimipour, 

2017), a New Genetic Algorithm (NGA) (Keshanchi, Souri, & Navimipour, 2017). The results obtained 

by the EJA, MPQMA, and NGA are illustrated in Table 10. The task priority of EJA {TAS0, TAS2, TAS3, 

TAS4, TAS1, TAS6, TAS8, TAS7, TAS5, TAS9, TAS10}. Figure 9, Figure 10, Figure 11, and Figure 12 

represent the results obtained by the EJA, MPQMA, and NGA in terms of makespan, speedup, efficiency, 

and throughput. 

 

Table 8. Computation Cost for Case 3 

TAS / VTM VTM1 VTM2 VTM3 

TAS0 10 11 12 

TAS1 11 12 13 

TAS2 12 8 13 

TAS3 14 10 18 

TAS4 27 20 19 

TAS5 15 12 18 

TAS6 9 14 19 

TAS7 19 12 14 

TAS8 14 10 15 

TAS9 15 12 15 

TAS10 18 10 17 

 

 

0

0.05

0.1

0.15

CPOP HEFT ACO EJA 

T
h
ro

u
g
h
p
u
t 



www.scholink.org/ojs/index.php/asir             Applied Science and Innovative Research                  Vol. 7, No. 2, 2023 

42 
Published by SCHOLINK INC. 

Table 9. Schedule OBTained by EJA for CAse 3 

 VTM1 VTM2 VTM3 

 Sta_Time Fts_Time Sta_Time Fts_Time Sta_Time Fts_Time 

TAS0 - - 0 11 - - 

TAS1 36 47 - - - - 

TAS2 - - 11 19 - - 

TAS3 - - 19 29 - - 

TAS4 - - 29 49 - - 

TAS5 47 62 - - - - 

TAS6 - - - - 29 48 

TAS7 - - 59 71 - - 

TAS8 - - 49 59 - - 

TAS9 - - 71 83 - - 

TAS10 - - 83 93 - - 

 

Table 10. The Comparative Results for Case 3 

Algorithm Makespan 

MPQMA 101 

NGA 101 

EJA 93 

 

 

Figure 9. Comparison of Makespan for Case 3 

 

 

Figure 10. Comparison of Speedup for Case 3 
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Figure 11. Comparison of Efficiency for Case 3 

 

 

Figure 12. Comparison of Throughput for Case 3 

 

8. Conclusion and Future Work 

The suggested efficient Jaya algorithm allocates or schedules subtasks to available virtual machines in a 

cloud computing context. According to the findings obtained on DAGs of various situations, the efficient 

Jaya algorithm outperforms other algorithms in terms of makespan, speedup, efficiency, and throughput. 

In the future, we will create an algorithm based on DAGs that will consider resource load balancing. 
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