124 research outputs found

    Critical Exponents of the pure and random-field Ising models

    Full text link
    We show that current estimates of the critical exponents of the three-dimensional random-field Ising model are in agreement with the exponents of the pure Ising system in dimension 3 - theta where theta is the exponent that governs the hyperscaling violation in the random case.Comment: 9 pages, 4 encapsulated Postscript figures, REVTeX 3.

    Random Field and Random Anisotropy Effects in Defect-Free Three-Dimensional XY Models

    Full text link
    Monte Carlo simulations have been used to study a vortex-free XY ferromagnet with a random field or a random anisotropy on simple cubic lattices. In the random field case, which can be related to a charge-density wave pinned by random point defects, it is found that long-range order is destroyed even for weak randomness. In the random anisotropy case, which can be related to a randomly pinned spin-density wave, the long-range order is not destroyed and the correlation length is finite. In both cases there are many local minima of the free energy separated by high entropy barriers. Our results for the random field case are consistent with the existence of a Bragg glass phase of the type discussed by Emig, Bogner and Nattermann.Comment: 10 pages, including 2 figures, extensively revise

    Full reduction of large finite random Ising systems by RSRG

    Full text link
    We describe how to evaluate approximately various physical interesting quantities in random Ising systems by direct renormalization of a finite system. The renormalization procedure is used to reduce the number of degrees of freedom to a number that is small enough, enabling direct summing over the surviving spins. This procedure can be used to obtain averages of functions of the surviving spins. We show how to evaluate averages that involve spins that do not survive the renormalization procedure. We show, for the random field Ising model, how to obtain the "connected" 2-spin correlation function and the "disconnected" 2-spin correlation function. Consequently, we show how to obtain the average susceptibility and the average energy. For an Ising system with random bonds and random fields we show how to obtain the average specific heat. We conclude by presenting our numerical results for the average susceptibility and the "connected" 2-spin correlation function along one of the principal axes. (We believe this to be the first time, where the full three dimensional correlation is calculated and not just parameters like Nu or Eta.) The results for the average susceptibility are used to extract the critical temperature and critical exponents of the 3D random field Ising system.Comment: 30 pages, 17 figure

    New algorithm and results for the three-dimensional random field Ising Model

    Full text link
    The random field Ising model with Gaussian disorder is studied using a new Monte Carlo algorithm. The algorithm combines the advantanges of the replica exchange method and the two-replica cluster method and is much more efficient than the Metropolis algorithm for some disorder realizations. Three-dimensional sytems of size 24324^3 are studied. Each realization of disorder is simulated at a value of temperature and uniform field that is adjusted to the phase transition region for that disorder realization. Energy and magnetization distributions show large variations from one realization of disorder to another. For some realizations of disorder there are three well separated peaks in the magnetization distribution and two well separated peaks in the energy distribution suggesting a first-order transition.Comment: 24 pages, 23 figure

    Scaling and self-averaging in the three-dimensional random-field Ising model

    Full text link
    We investigate, by means of extensive Monte Carlo simulations, the magnetic critical behavior of the three-dimensional bimodal random-field Ising model at the strong disorder regime. We present results in favor of the two-exponent scaling scenario, ηˉ=2η\bar{\eta}=2\eta, where η\eta and ηˉ\bar{\eta} are the critical exponents describing the power-law decay of the connected and disconnected correlation functions and we illustrate, using various finite-size measures and properly defined noise to signal ratios, the strong violation of self-averaging of the model in the ordered phase.Comment: 8 pages, 6 figures, to be published in Eur. Phys. J.

    Critical behavior of a fluid in a disordered porous matrix: An Ornstein-Zernike approach

    Full text link
    Using a liquid-state approach based on Ornstein-Zernike equations, we study the behavior of a fluid inside a porous disordered matrix near the liquid-gas critical point.The results obtained within various standard approximation schemes such as lowest-order γ\gamma-ordering and the mean-spherical approximation suggest that the critical behavior is closely related to that of the random-field Ising model (RFIM).Comment: 10 pages, revtex, to appear in Physical Review Letter

    Power-law correlations and orientational glass in random-field Heisenberg models

    Full text link
    Monte Carlo simulations have been used to study a discretized Heisenberg ferromagnet (FM) in a random field on simple cubic lattices. The spin variable on each site is chosen from the twelve [110] directions. The random field has infinite strength and a random direction on a fraction x of the sites of the lattice, and is zero on the remaining sites. For x = 0 there are two phase transitions. At low temperatures there is a [110] FM phase, and at intermediate temperature there is a [111] FM phase. For x > 0 there is an intermediate phase between the paramagnet and the ferromagnet, which is characterized by a |k|^(-3) decay of two-spin correlations, but no true FM order. The [111] FM phase becomes unstable at a small value of x. At x = 1/8 the [110] FM phase has disappeared, but the power-law correlated phase survives.Comment: 8 pages, 12 Postscript figure

    Lower Neutrino Mass Bound from SN1987A Data and Quantum Geometry

    Full text link
    A lower bound on the light neutrino mass mνm_\nu is derived in the framework of a geometrical interpretation of quantum mechanics. Using this model and the time of flight delay data for neutrinos coming from SN1987A, we find that the neutrino masses are bounded from below by mν104103m_\nu\gtrsim 10^{-4}-10^{-3}eV, in agreement with the upper bound mνm_\nu\lesssim (O(0.1)O(1))({\cal O}(0.1) - {\cal O} (1)) eV currently available. When the model is applied to photons with effective mass, we obtain a lower limit on the electron density in intergalactic space that is compatible with recent baryon density measurements.Comment: 22 pages, 3 figure

    Critical Behavior of the 3d Random Field Ising Model: Two-Exponent Scaling or First Order Phase Transition?

    Full text link
    In extensive Monte Carlo simulations the phase transition of the random field Ising model in three dimensions is investigated. The values of the critical exponents are determined via finite size scaling. For a Gaussian distribution of the random fields it is found that the correlation length ξ\xi diverges with an exponent ν=1.1±0.2\nu=1.1\pm0.2 at the critical temperature and that χξ2η\chi\sim\xi^{2-\eta} with η=0.50±0.05\eta=0.50\pm0.05 for the connected susceptibility and χdisξ4ηˉ\chi_{\rm dis}\sim\xi^{4-\bar{\eta}} with ηˉ=1.03±0.05\bar{\eta}=1.03\pm0.05 for the disconnected susceptibility. Together with the amplitude ratio A=limTTcχdis/χ2(hr/T)2A=\lim_{T\to T_c}\chi_{\rm dis}/\chi^2(h_r/T)^2 being close to one this gives further support for a two exponent scaling scenario implying ηˉ=2η\bar{\eta}=2\eta. The magnetization behaves discontinuously at the transition, i.e. β=0\beta=0, indicating a first order transition. However, no divergence for the specific heat and in particular no latent heat is found. Also the probability distribution of the magnetization does not show a multi-peak structure that is characteristic for the phase-coexistence at first order phase transition points.Comment: 14 pages, RevTeX, 11 postscript figures (fig9.ps and fig11.ps should be printed separately

    Specific-Heat Exponent of Random-Field Systems via Ground-State Calculations

    Full text link
    Exact ground states of three-dimensional random field Ising magnets (RFIM) with Gaussian distribution of the disorder are calculated using graph-theoretical algorithms. Systems for different strengths h of the random fields and sizes up to N=96^3 are considered. By numerically differentiating the bond-energy with respect to h a specific-heat like quantity is obtained, which does not appear to diverge at the critical point but rather exhibits a cusp. We also consider the effect of a small uniform magnetic field, which allows us to calculate the T=0 susceptibility. From a finite-size scaling analysis, we obtain the critical exponents \nu=1.32(7), \alpha=-0.63(7), \eta=0.50(3) and find that the critical strength of the random field is h_c=2.28(1). We discuss the significance of the result that \alpha appears to be strongly negative.Comment: 9 pages, 9 figures, 1 table, revtex revised version, slightly extende
    corecore