281 research outputs found
Atomic motion in tilted optical lattices
This paper presents a formalism describing the dynamics of a quantum particle
in a one-dimensional, time-dependent, tilted lattice. The formalism uses the
Wannier-Stark states, which are localized in each site of the lattice, and
provides a simple framework allowing fully-analytical developments. Analytic
solutions describing the particle motion are explicit derived, and the
resulting dynamics is studied.Comment: 6 pages, 2 figs, submitted to EPJD, Springer Verlag styl
Critical Susceptibility Exponent Measured from Fe/W(110) Bilayers
The critical phase transition in ferromagnetic ultrathin Fe/W(110) films has
been studied using the magnetic ac susceptibility. A statistically objective,
unconstrained fitting of the susceptibility is used to extract values for the
critical exponent (gamma), the critical temperature Tc, the critical amplitude
(chi_o) and the range of temperature that exhibits power-law behaviour. A
fitting algorithm was used to simultaneously minimize the statistical variance
of a power law fit to individual experimental measurements of chi(T). This
avoids systematic errors and generates objective fitting results. An ensemble
of 25 measurements on many different films are analyzed. Those which permit an
extended fitting range in reduced temperature lower than approximately .00475
give an average value gamma=1.76+-0.01. Bilayer films give a weighted average
value of gamma = 1.75+-0.02. These results are in agreement with the
-dimensional Ising exponent gamma= 7/4. Measurements that do not exhibit
power-law scaling as close to Tc (especially films of thickness 1.75ML) show a
value of gamma higher than the Ising value. Several possibilities are
considered to account for this behaviour.Comment: -Submitted to Phys. Rev. B -Revtex4 Format -6 postscript figure
Tuning the Magnetic Anisotropy at a Molecule-Metal Interface
International audienceWe demonstrate that a C 60 overlayer enhances the perpendicular magnetic anisotropy of a Co thin film, inducing an inverse spin reorientation transition from in plane to out of plane. The driving force is the C 60 =Co interfacial magnetic anisotropy that we have measured quantitatively in situ as a function of the C 60 coverage. Comparison with state-of-the-art ab initio calculations show that this interfacial anisotropy mainly arises from the local hybridization between C 60 p z and Co d z 2 orbitals. By generalizing these arguments, we also demonstrate that the hybridization of C 60 with a Fe(110) surface decreases the perpendicular magnetic anisotropy. These results open the way to tailor the interfacial magnetic anisotropy in organic-material–ferromagnet systems
Size effect on magnetism of Fe thin films in Fe/Ir superlattices
In ferromagnetic thin films, the Curie temperature variation with the
thickness is always considered as continuous when the thickness is varied from
to atomic planes. We show that it is not the case for Fe in Fe/Ir
superlattices. For an integer number of atomic planes, a unique magnetic
transition is observed by susceptibility measurements, whereas two magnetic
transitions are observed for fractional numbers of planes. This behavior is
attributed to successive transitions of areas with and atomic planes,
for which the 's are not the same. Indeed, the magnetic correlation length
is presumably shorter than the average size of the terraces. Monte carlo
simulations are performed to support this explanation.Comment: LaTeX file with Revtex, 5 pages, 5 eps figures, to appear in Phys.
Rev. Let
Opportunities for polymer-based nanowires in optoelectronics and nanophotonics
International audienceSee document joine
Opportunities for polymer-based nanowires in optoelectronics and nanophotonics
International audienceSee document joine
Optical frequency measurement of the 1S-3S two-photon transition in hydrogen
This article reports the first optical frequency measurement of the
transition in hydrogen. The excitation of this
transition occurs at a wavelength of 205 nm which is obtained with two
frequency doubling stages of a titanium sapphire laser at 820 nm. Its frequency
is measured with an optical frequency comb. The second-order Doppler effect is
evaluated from the observation of the motional Stark effect due to a transverse
magnetic field perpendicular to the atomic beam. The measured value of the
frequency splitting is with a relative uncertainty of
. After the measurement of the
frequency, this result is the most precise of the optical frequencies in
hydrogen
Schwinger boson theory of anisotropic ferromagnetic ultrathin films
Ferromagnetic thin films with magnetic single-ion anisotropies are studied
within the framework of Schwinger bosonization of a quantum Heisenberg model.
Two alternative bosonizations are discussed. We show that qualitatively correct
results are obtained even at the mean-field level of the theory, similar to
Schwinger boson results for other magnetic systems. In particular, the
Mermin-Wagner theorem is satisfied: a spontaneous magnetization at finite
temperatures is not found if the ground state of the anisotropic system
exhibits a continuous degeneracy. We calculate the magnetization and effective
anisotropies as functions of exchange interaction, magnetic anisotropies,
external magnetic field, and temperature for arbitrary values of the spin
quantum number. Magnetic reorientation transitions and effective anisotropies
are discussed. The results obtained by Schwinger boson mean-field theory are
compared with the many-body Green's function technique.Comment: 14 pages, including 7 EPS figures, minor changes, final version as
publishe
Transition Metal Cluster Compounds: Luminescence and Design of (nano)Composites
International audienc
- …