281 research outputs found

    Atomic motion in tilted optical lattices

    Full text link
    This paper presents a formalism describing the dynamics of a quantum particle in a one-dimensional, time-dependent, tilted lattice. The formalism uses the Wannier-Stark states, which are localized in each site of the lattice, and provides a simple framework allowing fully-analytical developments. Analytic solutions describing the particle motion are explicit derived, and the resulting dynamics is studied.Comment: 6 pages, 2 figs, submitted to EPJD, Springer Verlag styl

    Critical Susceptibility Exponent Measured from Fe/W(110) Bilayers

    Full text link
    The critical phase transition in ferromagnetic ultrathin Fe/W(110) films has been studied using the magnetic ac susceptibility. A statistically objective, unconstrained fitting of the susceptibility is used to extract values for the critical exponent (gamma), the critical temperature Tc, the critical amplitude (chi_o) and the range of temperature that exhibits power-law behaviour. A fitting algorithm was used to simultaneously minimize the statistical variance of a power law fit to individual experimental measurements of chi(T). This avoids systematic errors and generates objective fitting results. An ensemble of 25 measurements on many different films are analyzed. Those which permit an extended fitting range in reduced temperature lower than approximately .00475 give an average value gamma=1.76+-0.01. Bilayer films give a weighted average value of gamma = 1.75+-0.02. These results are in agreement with the -dimensional Ising exponent gamma= 7/4. Measurements that do not exhibit power-law scaling as close to Tc (especially films of thickness 1.75ML) show a value of gamma higher than the Ising value. Several possibilities are considered to account for this behaviour.Comment: -Submitted to Phys. Rev. B -Revtex4 Format -6 postscript figure

    Tuning the Magnetic Anisotropy at a Molecule-Metal Interface

    Get PDF
    International audienceWe demonstrate that a C 60 overlayer enhances the perpendicular magnetic anisotropy of a Co thin film, inducing an inverse spin reorientation transition from in plane to out of plane. The driving force is the C 60 =Co interfacial magnetic anisotropy that we have measured quantitatively in situ as a function of the C 60 coverage. Comparison with state-of-the-art ab initio calculations show that this interfacial anisotropy mainly arises from the local hybridization between C 60 p z and Co d z 2 orbitals. By generalizing these arguments, we also demonstrate that the hybridization of C 60 with a Fe(110) surface decreases the perpendicular magnetic anisotropy. These results open the way to tailor the interfacial magnetic anisotropy in organic-material–ferromagnet systems

    Size effect on magnetism of Fe thin films in Fe/Ir superlattices

    Full text link
    In ferromagnetic thin films, the Curie temperature variation with the thickness is always considered as continuous when the thickness is varied from nn to n+1n+1 atomic planes. We show that it is not the case for Fe in Fe/Ir superlattices. For an integer number of atomic planes, a unique magnetic transition is observed by susceptibility measurements, whereas two magnetic transitions are observed for fractional numbers of planes. This behavior is attributed to successive transitions of areas with nn and n+1n+1 atomic planes, for which the TcT_c's are not the same. Indeed, the magnetic correlation length is presumably shorter than the average size of the terraces. Monte carlo simulations are performed to support this explanation.Comment: LaTeX file with Revtex, 5 pages, 5 eps figures, to appear in Phys. Rev. Let

    Optical frequency measurement of the 1S-3S two-photon transition in hydrogen

    Full text link
    This article reports the first optical frequency measurement of the 1S3S1\mathrm{S}-3\mathrm{S} transition in hydrogen. The excitation of this transition occurs at a wavelength of 205 nm which is obtained with two frequency doubling stages of a titanium sapphire laser at 820 nm. Its frequency is measured with an optical frequency comb. The second-order Doppler effect is evaluated from the observation of the motional Stark effect due to a transverse magnetic field perpendicular to the atomic beam. The measured value of the 1S1/2(F=1)3S1/2(F=1)1\mathrm{S}_{1/2}(F=1)-3\mathrm{S}_{1/2}(F=1) frequency splitting is 2922742936.729(13)MHz2 922 742 936.729 (13) \mathrm{MHz} with a relative uncertainty of 4.5×10124.5\times10^{-12}. After the measurement of the 1S2S1\mathrm{S}-2\mathrm{S} frequency, this result is the most precise of the optical frequencies in hydrogen

    Schwinger boson theory of anisotropic ferromagnetic ultrathin films

    Full text link
    Ferromagnetic thin films with magnetic single-ion anisotropies are studied within the framework of Schwinger bosonization of a quantum Heisenberg model. Two alternative bosonizations are discussed. We show that qualitatively correct results are obtained even at the mean-field level of the theory, similar to Schwinger boson results for other magnetic systems. In particular, the Mermin-Wagner theorem is satisfied: a spontaneous magnetization at finite temperatures is not found if the ground state of the anisotropic system exhibits a continuous degeneracy. We calculate the magnetization and effective anisotropies as functions of exchange interaction, magnetic anisotropies, external magnetic field, and temperature for arbitrary values of the spin quantum number. Magnetic reorientation transitions and effective anisotropies are discussed. The results obtained by Schwinger boson mean-field theory are compared with the many-body Green's function technique.Comment: 14 pages, including 7 EPS figures, minor changes, final version as publishe
    corecore