1,277 research outputs found
Fuel Minimizing Control for Constrained Relative Satellite Orbits
In this paper, we study the fuel minimization problem of hovering satellite subject to a practical constraint on the trajectory of the deputy satellite. It is first shown that the constraint condition can be expressed equivalently as maximum flight time inequalities. On this basis, a cost function relating to the fuel burn is formulated. A numerical procedure is developed to solve this fuel minimization problem
Quantum universal detectors
We address the problem of estimating the expectation value of an
arbitrary operator O via a universal measuring apparatus that is independent of
O, and for which the expectation values for different operators are obtained by
changing only the data-processing. The ``universal detector'' performs a joint
measurement on the system and on a suitably prepared ancilla. We characterize
such universal detectors, and show how they can be obtained either via Bell
measurements or via local measurements and classical communication between
system and ancilla.Comment: 4 pages, no figure
Progress Towards a Multi-Modal Capsule Endoscopy Device Featuring Microultrasound Imaging
Current clinical standards for endoscopy in the gastrointestinal (GI) tract combine high definition optics and ultrasound imaging to view the lumen superficially and through its thickness. However, these instruments are limited to the length of an endoscope and the only clinically available, autonomous devices able to travel the full length of the GI tract easily offer only video capsule endoscopy (VCE). Our work seeks to overcome this limitation with a device (“Sonopill”) for multimodal capsule endoscopy, providing optical and microultrasound (μUS) imaging and supporting sensors1.
μUS transducers have been developed with multiple piezoelectric materials operating across a range of centre frequencies to study viability in the GI tract. Because of the combined constraints of μUS imaging and the low power / heat tolerance of autonomous devices, a hybrid approach has been taken to the transducer design, with separate transmit and receive arrays allowing multiple manufacturing approaches to maximise system efficiency. To explore these approaches fully, prototype devices have been developed with PVDF, high-frequency PZT and PMN-PT composites, and piezoelectric micromachined ultrasonic transducer arrays. Test capsules have been developed using 3D printing to investigate issues including power consumption, heat generation / dissipation, acoustic coupling, signal strength and capsule integrity. Because of the high functional density of the electronics in our proposed system, application specific integrated circuits (ASICs) have been developed to realise the ultrasound transmit and receive circuitry along with white-light and autofluorescence imaging with single-photon avalanche detectors (SPADs).
The ultrasound ASIC has been developed and the SPAD electronics and optical subsystem have been validated experimentally. The functionality of various transducer materials has been examined as a function of frequency and ultrasound transducers have been developed to operate at centre frequencies in the range 15 - 50 MHz. Ex vivo testing of porcine tissue has been performed, generating images of interest to the clinical community, demonstrating the viability of the Sonopill concept
Effects of off great-circle propagation on the phase of long-period surface waves
Surface wave phase corrections for departures from great-circle propagation are computed using two-point ray-tracing through the aspherical earth model M84C of Woodhouse & Dziewonski (1984). For Rayleigh and Love waves with periods in the range 100–250 s, we determine whether these corrections provide significant variance reductions in source determinations compared with corrections calculated assuming great-circle propagation through the heterogeneous structure. For most source-receiver geometries, the off great-circle travel-time effects are small (< 10 s) for second and third orbits (e.g. R2 and R3), and their application in source determinations does not significantly reduce the data variance. This suggests that for the loworder heterogeneous models currently available the geometrical optics approximation is valid for long-period low orbit surface waves. Off great-circle phase anomalies increase quasi-linearly with increasing orbit number, indicating that the geometrical optics approximation degrades for higher orbits, which emphasizes the importance of developing higher order approximations for free-oscillation studies.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73147/1/j.1365-246X.1987.tb05217.x.pd
Magnetic Anisotropy in Quantum Hall Ferromagnets
We show that the sign of magnetic anisotropy energy in quantum Hall
ferromagnets is determined by a competition between electrostatic and exchange
energies. Easy-axis ferromagnets tend to occur when Landau levels whose states
have similar spatial profiles cross. We report measurements of integer QHE
evolution with magnetic-field tilt. Reentrant behavior observed for the QHE at high tilt angles is attributed to easy-axis anisotropy. This
interpretation is supported by a detailed calculation of the magnetic
anisotropy energy.Comment: 12 pages, 3 figures, submitted to Phys. Rev. Let
Adaptive Quantum Homodyne Tomography
An adaptive optimization technique to improve precision of quantum homodyne
tomography is presented. The method is based on the existence of so-called null
functions, which have zero average for arbitrary state of radiation. Addition
of null functions to the tomographic kernels does not affect their mean values,
but changes statistical errors, which can then be reduced by an optimization
method that "adapts" kernels to homodyne data. Applications to tomography of
the density matrix and other relevant field-observables are studied in detail.Comment: Latex (RevTex class + psfig), 9 Figs, Submitted to PR
In-Vivo Evaluation of Microultrasound and Thermometric Capsule Endoscopes
Clinical endoscopy and colonoscopy are commonly used to investigate and diagnose disorders in the upper gastrointestinal tract and colon respectively. However, examination of the anatomically remote small bowel with conventional endoscopy is challenging. This and advances in miniaturization led to the development of video capsule endoscopy (VCE) to allow small bowel examination in a non-invasive manner. Available since 2001, current capsule endoscopes are limited to viewing the mucosal surface only due to their reliance on optical imaging. To overcome this limitation with submucosal imaging, work is under way to implement microultrasound (μUS) imaging in the same form as VCE devices. This paper describes two prototype capsules, termed Sonocap and Thermocap, which were developed respectively to assess the quality of μUS imaging and the maximum power consumption that can be tolerated for such a system. The capsules were tested in vivo in the oesophagus and small bowel of porcine models. Results are presented in the form of μUS B-scans and safe temperature readings observed up to 100 mW in both biological regions. These results demonstrate that acoustic coupling and μUS imaging can be achieved in vivo in the lumen of the bowel and the maximum power consumption that is possible for miniature μUS systems
New Debris Disks Around Nearby Main Sequence Stars: Impact on The Direct Detection of Planets
Using the MIPS instrument on the Spitzer telescope, we have searched for
infrared excesses around a sample of 82 stars, mostly F, G, and K main-sequence
field stars, along with a small number of nearby M stars. These stars were
selected for their suitability for future observations by a variety of
planet-finding techniques. These observations provide information on the
asteroidal and cometary material orbiting these stars - data that can be
correlated with any planets that may eventually be found. We have found
significant excess 70um emission toward 12 stars. Combined with an earlier
study, we find an overall 70um excess detection rate of % for mature
cool stars. Unlike the trend for planets to be found preferentially toward
stars with high metallicity, the incidence of debris disks is uncorrelated with
metallicity. By newly identifying 4 of these stars as having weak 24um excesses
(fluxes 10% above the stellar photosphere), we confirm a trend found in
earlier studies wherein a weak 24um excess is associated with a strong 70um
excess. Interestingly, we find no evidence for debris disks around 23 stars
cooler than K1, a result that is bolstered by a lack of excess around any of
the 38 K1-M6 stars in 2 companion surveys. One motivation for this study is the
fact that strong zodiacal emission can make it hard or impossible to detect
planets directly with future observatories like the {\it Terrestrial Planet
Finder (TPF)}. The observations reported here exclude a few stars with very
high levels of emission, 1,000 times the emission of our zodiacal cloud,
from direct planet searches. For the remainder of the sample, we set relatively
high limits on dust emission from asteroid belt counterparts
Co‐location of the Downdip End of Seismic Coupling and the Continental Shelf Break
International audienceAlong subduction margins, the morphology of the near shore domain records the combined action of erosion from ocean waves and permanent tectonic deformation from the convergence of plates. We observe that at subduction margins around the globe, the edge of continental shelves tends to be located above the downdip end of seismic coupling on the megathrust. Coastlines lie farther landward at variable distances. This observation stems from a compilation of well-resolved coseismic and interseismic coupling data sets. The permanent interseismic uplift component of the total tectonic deformation can explain the localization of the shelf break. It contributes a short wave-length gradient in vertical deformation on top of the structural and isostatic deformation of the margin. This places a hinge line between seaward subsidence and landward uplift above the downdip end of high coupling. Landward of the hinge line, rocks are uplifted in the domain of wave-base erosion and a shelf is maintained by the competition of rock uplift and wave erosion. Wave erosion then sets the coastline back from the tectonically meaningful shelf break. We combine a wave erosion model with an elastic deformation model to illustrate how the downdip end of high coupling pins the location of the shelf break. In areas where the shelf is wide, onshore geodetic constraints on seismic coupling are limited and could be advantageously complemented by considering the location of the shelf break. Subduction margin morphology integrates hundreds of seismic cycles and could inform the persistence of seismic coupling patterns through time
Thermal and electrical conductivity of iron at Earth's core conditions
The Earth acts as a gigantic heat engine driven by decay of radiogenic
isotopes and slow cooling, which gives rise to plate tectonics, volcanoes, and
mountain building. Another key product is the geomagnetic field, generated in
the liquid iron core by a dynamo running on heat released by cooling and
freezing to grow the solid inner core, and on chemical convection due to light
elements expelled from the liquid on freezing. The power supplied to the
geodynamo, measured by the heat-flux across the core-mantle boundary (CMB),
places constraints on Earth's evolution. Estimates of CMB heat-flux depend on
properties of iron mixtures under the extreme pressure and temperature
conditions in the core, most critically on the thermal and electrical
conductivities. These quantities remain poorly known because of inherent
difficulties in experimentation and theory. Here we use density functional
theory to compute these conductivities in liquid iron mixtures at core
conditions from first principles- the first directly computed values that do
not rely on estimates based on extrapolations. The mixtures of Fe, O, S, and Si
are taken from earlier work and fit the seismologically-determined core density
and inner-core boundary density jump. We find both conductivities to be 2-3
times higher than estimates in current use. The changes are so large that core
thermal histories and power requirements must be reassessed. New estimates of
adiabatic heat-flux give 15-16 TW at the CMB, higher than present estimates of
CMB heat-flux based on mantle convection; the top of the core must be thermally
stratified and any convection in the upper core driven by chemical convection
against the adverse thermal buoyancy or lateral variations in CMB heat flow.
Power for the geodynamo is greatly restricted and future models of mantle
evolution must incorporate a high CMB heat-flux and explain recent formation of
the inner core.Comment: 11 pages including supplementary information, two figures. Scheduled
to appear in Nature, April 201
- …