113 research outputs found

    Gravitational level effects o optical properties of electrodeposited ZnO nanowire arrays

    Get PDF
    The coupling phenomena between the interfacial reaction rate and the microstructural/morphological variation rate must be reasonably well controlled to fabricate nano/meso- structural devices in a large scale. Otherwise, the physical property uniformity inside the device is not guaranteed to lose its superiority in the market. Free standing ZnO nanowire array was successfully synthesized on ITO/FTO substrate by template-free method in Zn(NO3)2 aqueous solutions. Two types of electrode configurations were employed in order to quantitatively examine the effect of gravitational strength on electrodeposited ZnO nanowire array: (a) a horizontal cathode surface facing downward over an anode (C/A) and (b) an anode over a cathode (A/C). The former configuration may simulate the microgravitational environment, because macroscopic natural convection is not induced. PL of ZnO nanowire array was measured. More uniform nanowires are synthesized in C/A configuration than in A/C. Seeding ZnO nanoparticles on ITO/FTO substrate can control the diameter as well as the orientation. Please click Additional Files below to see the full abstract

    Electrodeposition of Metals in Microgravity Conditions

    Get PDF
    Metal electrodeposition may introduce various morphological variations depending on the electrolytic conditions including cell configurations. For liquid electrolytes, a precise study of these deposits may be complicated by convective motion due to buoyancy. Zero-gravity (0-G) condition provided by drop shaft or parabolic flight gives a straightforward mean to avoid this effect: we present here 0-G electrodeposition experiments, which we compare to ground experiments (1-G). Two electrochemical systems were studied by laser interferometry, allowing to measure the concentration variations in the electrolyte: copper deposition from copper sulfate aqueous solution and lithium deposition from an ionic liquid containing LiTFSI. For copper, concentration variations were in good agreement with theory. For lithium, an apparent induction time was observed for the concentration evolution at 1-G: due to this induction time and to the low diffusion coefficient in ionic liquid, the concentration variations were hardly measurable in the parabolic flight 0-G periods of 20 seconds

    Molecular pathogenesis of spondylocheirodysplastic Ehlers-Danlos syndrome caused by mutant ZIP13 proteins.

    Get PDF
    The zinc transporter protein ZIP13 plays critical roles in bone, tooth, and connective tissue development, and its dysfunction is responsible for the spondylocheirodysplastic form of Ehlers-Danlos syndrome (SCD-EDS, OMIM 612350). Here, we report the molecular pathogenic mechanism of SCD-EDS caused by two different mutant ZIP13 proteins found in human patients: ZIP13(G64D), in which Gly at amino acid position 64 is replaced by Asp, and ZIP13(ΔFLA), which contains a deletion of Phe-Leu-Ala. We demonstrated that both the ZIP13(G64D) and ZIP13(ΔFLA) protein levels are decreased by degradation via the valosin-containing protein (VCP)-linked ubiquitin proteasome pathway. The inhibition of degradation pathways rescued the protein expression levels, resulting in improved intracellular Zn homeostasis. Our findings uncover the pathogenic mechanisms elicited by mutant ZIP13 proteins. Further elucidation of these degradation processes may lead to novel therapeutic targets for SCD-EDS

    Cisplatin-induced emesis: systematic review and meta-analysis of the ferret model and the effects of 5-HT3 receptor antagonists

    Get PDF
    PURPOSE: The ferret cisplatin emesis model has been used for ~30 years and enabled identification of clinically used anti-emetics. We provide an objective assessment of this model including efficacy of 5-HT(3) receptor antagonists to assess its translational validity. METHODS: A systematic review identified available evidence and was used to perform meta-analyses. RESULTS: Of 182 potentially relevant publications, 115 reported cisplatin-induced emesis in ferrets and 68 were included in the analysis. The majority (n = 53) used a 10 mg kg(−1) dose to induce acute emesis, which peaked after 2 h. More recent studies (n = 11) also used 5 mg kg(−1), which induced a biphasic response peaking at 12 h and 48 h. Overall, 5-HT(3) receptor antagonists reduced cisplatin (5 mg kg(−1)) emesis by 68% (45–91%) during the acute phase (day 1) and by 67% (48–86%) and 53% (38–68%, all P < 0.001), during the delayed phase (days 2, 3). In an analysis focused on the acute phase, the efficacy of ondansetron was dependent on the dosage and observation period but not on the dose of cisplatin. CONCLUSION: Our analysis enabled novel findings to be extracted from the literature including factors which may impact on the applicability of preclinical results to humans. It reveals that the efficacy of ondansetron is similar against low and high doses of cisplatin. Additionally, we showed that 5-HT(3) receptor antagonists have a similar efficacy during acute and delayed emesis, which provides a novel insight into the pharmacology of delayed emesis in the ferret

    Application of Linear Discriminant Analysis in Dimensionality Reduction for Hand Motion Classification

    Get PDF
    The classification of upper-limb movements based on surface electromyography (EMG) signals is an important issue in the control of assistive devices and rehabilitation systems. Increasing the number of EMG channels and features in order to increase the number of control commands can yield a high dimensional feature vector. To cope with the accuracy and computation problems associated with high dimensionality, it is commonplace to apply a processing step that transforms the data to a space of significantly lower dimensions with only a limited loss of useful information. Linear discriminant analysis (LDA) has been successfully applied as an EMG feature projection method. Recently, a number of extended LDA-based algorithms have been proposed, which are more competitive in terms of both classification accuracy and computational costs/times with classical LDA. This paper presents the findings of a comparative study of classical LDA and five extended LDA methods. From a quantitative comparison based on seven multi-feature sets, three extended LDA-based algorithms, consisting of uncorrelated LDA, orthogonal LDA and orthogonal fuzzy neighborhood discriminant analysis, produce better class separability when compared with a baseline system (without feature projection), principle component analysis (PCA), and classical LDA. Based on a 7-dimension time domain and time-scale feature vectors, these methods achieved respectively 95.2% and 93.2% classification accuracy by using a linear discriminant classifier

    X-Ray Fluorescence Microscopy Reveals Accumulation and Secretion of Discrete Intracellular Zinc Pools in the Lactating Mouse Mammary Gland

    Get PDF
    The mammary gland is responsible for the transfer of a tremendous amount of zinc ( approximately 1-3 mg zinc/day) from maternal circulation into milk during lactation to support the growth and development of the offspring. When this process is compromised, severe zinc deficiency compromises neuronal development and immune function and increases infant morbidity and/or mortality. It remains unclear as to how the lactating mammary gland dynamically integrates zinc import from maternal circulation with the enormous amount of zinc that is secreted into milk.Herein we utilized X-ray fluorescence microscopy (XFM) which allowed for the visualization and quantification of the process of zinc transfer through the mammary gland of the lactating mouse. Our data illustrate that a large amount of zinc first accumulates in the mammary gland during lactation. Interestingly, this zinc is not cytosolic, but accumulated in large, discrete sub-cellular compartments. These zinc pools were then redistributed to small intracellular vesicles destined for secretion in a prolactin-responsive manner. Confocal microscopy identified mitochondria and the Golgi apparatus as the sub-cellular compartments which accumulate zinc; however, zinc pools in the Golgi apparatus, but not mitochondria are redistributed to vesicles destined for secretion during lactation.Our data directly implicate the Golgi apparatus in providing a large, mobilizable zinc storage pool to assist in providing for the tremendous amount of zinc that is secreted into milk. Interestingly, our study also provides compelling evidence that mitochondrial zinc pools expand in the mammary gland during lactation which we speculate may play a role in regulating mammary gland function

    Numerical Simulation of Ionic Mass-Transfer Rates with Natural Convection in CuSO4-H2SO4 Solution

    Get PDF
    The ionic mass-transfer rates accompanying natural convective electrolyte flow in a CuSO4 aqueous electrolyte solution acidified with an excess amount of H2SO4 are numerically analyzed. The effects of a supporting electrolyte and an interaction behavior between both cathodic upward and anodic downward natural convections are examined. Both anodic and cathodic current density distributions along the vertical height are also calculated. A mathematical model is extended by incorporating an additional boundary condition at the limiting current. A measure of ionic migration effect epsilon, a ratio of limiting current to limiting diffusion current, involving the transference number of a discharging metallic ion is introduced for this purpose. The present calculation predicts the oscillation behaviors in transient variations in both electrode surface concentration and maximal natural convective velocity, which are deeply related to the periodic fluctuating electrolyte flow patterns distorted by secondary flow. The addition of H2SO4 maintains an epsilon value around 1 and prevents the further development to the transition or turbulent natural convection

    Phenomenological Discussion of Fe and Co Film Electrodeposited in a Magnetic Field

    Get PDF
    Fe and Co films were galvanostatically electrodeposited at 10 mA cm-2 on Cu substrate in sulfate aqueous solution with pH=1.5. The amount of electricity of 150 C cm-2 was selected. The magnetic field (0-5 T) was superimposed parallel to the electrode plane. The superimposition of magnetic field to the electrodeposition process considerably decreased the current efficiency with increasing in the magnetic flux for Fe, while almost constant efficiency was maintained for Co. SEM images showed the smoother surface morphology of Fe film. Texture measurement demonstrated that Fe(110) plane was oriented to the magnetic field direction. On the other hand, the surface morphology of Co deposits was drastically changed from an angular to a platelike shape by superimposing the magnetic field. Comparing with the case of Fe texture evolution, Co texture variation with magnetic flux was not evident. The magnetohydrodynamic (MHD) effects on Fe and Co electrodeposited films are phenomenologically discussed
    corecore