66,809 research outputs found

    Unitary Fermi Gas in a Harmonic Trap

    Get PDF
    We present an {\it ab initio} calculation of small numbers of trapped, strongly interacting fermions using the Green's Function Monte Carlo method (GFMC). The ground state energy, density profile and pairing gap are calculated for particle numbers N=2∼22N = 2 \sim 22 using the parameter-free "unitary" interaction. Trial wave functions are taken of the form of correlated pairs in a harmonic oscillator basis. We find that the lowest energies are obtained with a minimum explicit pair correlation beyond that needed to exploit the degeneracy of oscillator states. We find that energies can be well fitted by the expression aTFETF+Δmod(N,2)a_{TF} E_{TF} + \Delta {\rm mod}(N,2) where ETFE_{TF} is the Thomas-Fermi energy of a noninteracting gas in the trap and Δ\Delta is a pairing gap. There is no evidence of a shell correction energy in the systematics, but the density distributions show pronounced shell effects. We find the value Δ=0.7±0.2ω\Delta= 0.7\pm 0.2\omega for the pairing gap. This is smaller than the value found for the uniform gas at a density corresponding to the central density of the trapped gas.Comment: 2 figures, 2 table

    Finite element implementation of state variable-based viscoplasticity models

    Get PDF
    The implementation of state variable-based viscoplasticity models is made in a general purpose finite element code for structural applications of metals deformed at elevated temperatures. Two constitutive models, Walker's and Robinson's models, are studied in conjunction with two implicit integration methods: the trapezoidal rule with Newton-Raphson iterations and an asymptotic integration algorithm. A comparison is made between the two integration methods, and the latter method appears to be computationally more appealing in terms of numerical accuracy and CPU time. However, in order to make the asymptotic algorithm robust, it is necessary to include a self adaptive scheme with subincremental step control and error checking of the Jacobian matrix at the integration points. Three examples are given to illustrate the numerical aspects of the integration methods tested

    Grazing activity increases decomposition of yak dung and litter in an alpine meadow on the Qinghai-Tibet plateau

    Get PDF
    Publishe

    Effect of neurostimulation on cognition and mood in refractory epilepsy.

    Get PDF
    Epilepsy is a common, debilitating neurological disorder characterized by recurrent seizures. Mood disorders and cognitive deficits are common comorbidities in epilepsy that, like seizures, profoundly influence quality of life and can be difficult to treat. For patients with refractory epilepsy who are not candidates for resection, neurostimulation, the electrical modulation of epileptogenic brain tissue, is an emerging treatment alternative. Several forms of neurostimulation are currently available, and therapy selection hinges on relative efficacy for seizure control and amelioration of neuropsychiatric comorbidities. Here, we review the current evidence for how invasive and noninvasive neurostimulation therapies affect mood and cognition in persons with epilepsy. Invasive therapies include vagus nerve stimulation (VNS), deep brain stimulation (DBS), and responsive neurostimulation (RNS). Noninvasive therapies include trigeminal nerve stimulation (TNS), repetitive transcranial magnetic stimulation (rTMS), and transcranial direct current stimulation (tDCS). Overall, current evidence supports stable cognition and mood with all neurostimulation therapies, although there is some evidence that cognition and mood may improve with invasive forms of neurostimulation. More research is required to optimize the effects of neurostimulation for improvements in cognition and mood
    • …
    corecore