102 research outputs found

    The role of mathematics for physics teaching and understanding

    Get PDF
    That mathematics is the “language of physics” implies that both areas are deeply interconnected, such that often no separation between “pure” mathematics and “pure” physics is possible. To clarify their interplay a technical and a structural role of mathematics can be distinguished. A thorough understanding of this twofold role in physics is also important for shaping physics education especially with respect to teaching the nature of physics. Herewith the teachers and their pedagogical content knowledge play an important role. Therefore we develop a model of PCK concerning the interplay of mathematics and physics in order to provide a theoretical framework for the views and teaching strategies of teachers. In an exploratory study four teachers from Germany and four teachers from Israel have been interviewed concerning their views and its transfer to teaching physics. Here we describe the results from Germany. Besides general views and knowledge held by all or nearly all teachers we also observe specific individual focus depending on the teachers’ background and experiences. The results fit well into the derived model of PCK

    Non-universal current flow near the metal-insulator transition in an oxide interface

    Full text link
    In systems near phase transitions, macroscopic properties often follow algebraic scaling laws, determined by the dimensionality and the underlying symmetries of the system. The emergence of such universal scaling implies that microscopic details are irrelevant. Here, we locally investigate the scaling properties of the metal-insulator transition at the LaAlO3/SrTiO3 interface. We show that, by changing the dimensionality and the symmetries of the electronic system, coupling between structural and electronic properties prevents the universal behavior near the transition. By imaging the current flow in the system, we reveal that structural domain boundaries modify the filamentary flow close to the transition point, preventing a fractal with the expected universal dimension from forming. Our results offer a generic platform to engineer electronic transitions on the nanoscale.Comment: 19 pages, 6 figure

    Anti-Hyperon Enhancement through Baryon Junction Loops

    Get PDF
    The baryon junction exchange mechanism recently proposed to explain valence baryon number transport in nuclear collisions is extended to study midrapidity anti-hyperon production. Baryon junction-anti-junction (J anti-J) loops are shown to enhance anti-Lambda, anti-Xi, anti-Omega yields as well as lead to long range rapidity correlations. Results are compared to recent WA97 Pb + Pb -> Y + anti-Y + X data.Comment: 10 pages, 4 figure

    Knowledge Integration in the Digital Age: Trajectories, Opportunities and Future Directions

    Get PDF
    Researchers from around the world have shaped knowledge integration (KI), a framework that captures the processes learners use to build on their multiple ideas and refine their understanding. KI emerged 25 years ago from syntheses of experimental, longitudinal, and meta-analytic studies of learning and instruction. Advances in KI have resulted from partnerships that combine expertise in learning, instruction, classroom teaching, assessment, technology, and the disciplines. This structured poster session includes partnerships that have advanced design of instruction, assessment, professional development, learning technologies, and research methodologies. Participants report on new technologies, including games, to strengthen KI; instructional designs that take advantage of collaboration to support KI; and extensions of KI to integrate science with other disciplines. They summarize exciting results and identify promising opportunities for advancing STEM instruction to promote intentional, life-long learners in the digital age
    • 

    corecore