208 research outputs found

    On the Production of π+π+\pi^+\pi^+ Pairs in pp Collisions at 0.8 GeV

    Get PDF
    Data accumulated recently for the exclusive measurement of the pp→ppπ+π−pp\to pp\pi^+\pi^- reaction at a beam energy of 0.793 GeV using the COSY-TOF spectrometer have been analyzed with respect to possible events from the pp→nnπ+π+pp \to nn\pi^+\pi^+ reaction channel. The latter is expected to be the only ππ\pi\pi production channel, which contains no major contributions from resonance excitation close to threshold and hence should be a good testing ground for chiral dynamics in the ππ\pi\pi production process. No single event has been found, which meets all conditions for being a candidate for the pp→nnπ+π+pp \to nn \pi^+\pi^+ reaction. This gives an upper limit for the cross section of 0.16 μ\mub (90% C.L.), which is more than an order of magnitude smaller than the cross sections of the other two-pion production channels at the same incident energy

    Evaluation of the Validity of SAMe-TT2R2 Score in a Cohort of Venous Thromboembolism Patients Treated With Warfarin

    Get PDF
    Low SAMe-TT2R2 score of <2 was validated as a predictor of optimum anticoagulation control, reflected by mean time in therapeutic range (TTR) above 65% to 70%, among warfarin-treated atrial fibrillation patients. This study aimed to validate the ability of SAMe-TT2R2 score and its individual components in predicting anticoagulation control (mean TTR and clinical events) among a cohort of venous thromboembolism (VTE) patients in Qatar. A total of 295 patients were retrospectively evaluated. There was a trend toward statistical significance in mean TTR between low (<2) and high (≥ 2) SAMe-TT2R2 score groups (P = .05), a difference that was not sustained when a cutoff of 3 was used (ie, a score of 3 or more). Patients with poor INR control (TTR <70%) were numerically less likely to have SAMe-TT2R2 score of <2 compared with those with good INR control, though the difference was not statistically significant (16.7% vs 83.3%, respectively, P = .4). No thromboembolic events were reported, and no association was found between the score and risk of bleeding. Non-Caucasian origin was the only significant predictor of good anticoagulation in the studied cohort. In conclusion, SAMe-TT2R2 score could not predict quality of anticoagulation control in a cohort of VTE patients treated with warfarin in Qatar. Contribution of other clinical factors and whether a different scoring may yield better prediction of anticoagulation control remains to be tested.The authors disclose receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Medical Research Center in Hamad Medical Corporation. The authors would like to thank Mr Walid Mekkawi and Dr Sayed Yameen, senior pharmacists, for their contribution in data collection. The authors disclose receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Medical Research Center in Hamad Medical Corporation.Scopu

    Strong negative self regulation of Prokaryotic transcription factors increases the intrinsic noise of protein expression

    Get PDF
    Background Many prokaryotic transcription factors repress their own transcription. It is often asserted that such regulation enables a cell to homeostatically maintain protein abundance. We explore the role of negative self regulation of transcription in regulating the variability of protein abundance using a variety of stochastic modeling techniques. Results We undertake a novel analysis of a classic model for negative self regulation. We demonstrate that, with standard approximations, protein variance relative to its mean should be independent of repressor strength in a physiological range. Consequently, in that range, the coefficient of variation would increase with repressor strength. However, stochastic computer simulations demonstrate that there is a greater increase in noise associated with strong repressors than predicted by theory. The discrepancies between the mathematical analysis and computer simulations arise because with strong repressors the approximation that leads to Michaelis-Menten-like hyperbolic repression terms ceases to be valid. Because we observe that strong negative feedback increases variability and so is unlikely to be a mechanism for noise control, we suggest instead that negative feedback is evolutionarily favoured because it allows the cell to minimize mRNA usage. To test this, we used in silico evolution to demonstrate that while negative feedback can achieve only a modest improvement in protein noise reduction compared with the unregulated system, it can achieve good improvement in protein response times and very substantial improvement in reducing mRNA levels. Conclusions Strong negative self regulation of transcription may not always be a mechanism for homeostatic control of protein abundance, but instead might be evolutionarily favoured as a mechanism to limit the use of mRNA. The use of hyperbolic terms derived from quasi-steady-state approximation should also be avoided in the analysis of stochastic models with strong repressors

    Systematic study of the pp -> pp omega reaction

    Full text link
    A systematic study of the production of omega-mesons in proton-proton-collisions was carried out in a kinematically complete experiment at three excess energies(epsilon= 92, 128, 173MeV). Both protons were detected using the large-acceptance COSY-TOF spectrometer at an external beam line at the Cooler Synchrotron COSY at Forschungszentrum J\"ulich. The total cross section, angular distributions of both omega-mesons and protons were measured and presented in various reference frames such as the overall CMS, helicity and Jackson frame. In addition, the orientation of the omega-spin and invariant mass spectra were determined. We observe omega-production to take place dominantly in Ss and Sp final states at epsilon = 92, 128 MeV and, additionally, in Sd at epsilon= 173 MeV. No obvious indication of resonant omega-production via N^*-resonances was found, as proton angular distributions are almost isotropic and invariant mass spectra are compatible with phase space distributions. A dominant role of ^3P_1 and ^1S_0 initial partial waves for omega-production was concluded from the orientation of the decay plane of the omega-meson. Although the Jackson angle distributions in the omega-p-Jackson frame are anisotropic we argue that this is not an indication of a resonance but rather a kinematical effect reflecting the anisotropy of the omega angular distribution. The helicity angle distribution in the omega-p-helicity frame shows an anisotropy which probably reflects effects of the omega angular momenta in the final state; this observable may be, in addition to the orientation of the omega decay plane, the most sensitive one to judge the validity of theoretical descriptions of the production process.Comment: 17 pages, 16 figures, accepted for publication in EPJ

    Single-Pion Production in pp Collisions at 0.95 GeV/c (II)

    Get PDF
    The single-pion production reactions pp→dπ+pp\to d\pi^+, pp→npπ+pp\to np\pi^+ and pp→ppπ0pp\to pp\pi^0 were measured at a beam momentum of 0.95 GeV/c (Tp≈T_p \approx 400 MeV) using the short version of the COSY-TOF spectrometer. The central calorimeter provided particle identification, energy determination and neutron detection in addition to time-of-flight and angle measurements from other detector parts. Thus all pion production channels were recorded with 1-4 overconstraints. Main emphasis is put on the presentation and discussion of the npπ+np\pi^+ channel, since the results on the other channels have already been published previously. The total and differential cross sections obtained are compared to theoretical calculations. In contrast to the ppπ0pp\pi^0 channel we find in the npπ+np\pi^+ channel a strong influence of the Δ\Delta excitation already at this energy close to threshold. In particular we find a (3cos2Θ+1)(3 cos^2\Theta + 1) dependence in the pion angular distribution, typical for a pure s-channel Δ\Delta excitation and identical to that observed in the dπ+d\pi^+ channel. Since the latter is understood by a s-channel resonance in the 1D2^1D_2 pnpn partial wave, we discuss an analogous scenario for the pnπ+pn\pi^+ channel

    Production of Lambda and Sigma^0 hyperons in proton-proton collisions

    Get PDF
    This paper reports results on simultaneous measurements of the reaction channels pp -> pK+\Lambda and pp -> pK+\Sigma^0 at excess energies of 204, 239, and 284 MeV (\Lambda) and 127, 162, and 207 MeV (\Sigma^0). Total and differential cross sections are given for both reactions. It is concluded from the measured total cross sections that the high energy limit of the cross section ratio is almost reached at an excess energy of only about 200 MeV. From the differential distributions observed in the overall CMS as well as in the Jackson and helicity frames, a significant contribution of interfering nucleon resonances to the \Lambda production mechanism is concluded while resonant \Sigma^0-production seems to be of lesser importance and takes place only through specific partial waves of the entrance channel. The data also indicate that kaon exchange plays a minor role in the case of \Lambda- but an important role for \Sigma^0-production. Thus the peculiar energy dependence of the \Lambda-to-\Sigma^0 cross section ratio appears in a new light as its explanation requires more than mere differences between the p\Lambda and the p\Sigma^0 final state interaction. The data provide a benchmark for theoretical models already available or yet to come.Comment: 18 pages, 10 figures; accepted by The European Physical Journal A (EPJ A

    Study of omega-meson production in pp collisions at ANKE

    Full text link
    The production of omega-mesons in the pp->pp omega reaction has been investigated with the COSY-ANKE spectrometer for excess energies of 60 and 92MeV by detecting the two final protons and reconstructing their missing mass. The large multipion background was subtracted using an event-by-event transformation of the proton momenta between the two energies. Differential distributions and total cross sections were obtained after careful studies of possible systematic uncertainties in the overall ANKE acceptance. The results are compared with the predictions of theoretical models. Combined with data on the phi-meson, a more refined estimate is made of the Okubo-Zweig-Iizuka rule violation in the phi/omega production ratio.Comment: 10 pages, 9 figures, version 1, submitted to EPJ-

    Two-Pion Production in Proton-Proton Collisions with Polarized Beam

    Get PDF
    The two-pion production reaction p⃗p→ppπ+π−\vec{p}p\to pp\pi^+\pi^- was measured with a polarized proton beam at Tp≈T_p \approx 750 and 800 MeV using the short version of the COSY-TOF spectrometer. The implementation of a delayed pulse technique for Quirl and central calorimeter provided positive π+\pi^+ identification in addition to the standard particle identification, energy determination as well as time-of-flight and angle measurements. Thus all four-momenta of the emerging particles could be determined with 1-4 overconstraints. Total and differential cross sections as well as angular distributions of the vector analyzing power have been obtained. They are compared to previous data and theoretical calculations. In contrast to predictions we find significant analyzing power values up to AyA_y = 0.3

    The pK0\Sigma+ final state in proton-proton collisions

    Get PDF
    This paper reports results from a study of the reaction pp->pK0\Sigma+ at beam momenta of p_{beam} = 2950, 3059, and 3200 MeV/c (excess energies of \epsilon= 126, 161, and 206 MeV). Total cross sections were determined for all energies; a set of differential cross sections (Dalitz plots; invariant mass spectra of all two-body subsystems; angular distributions of all final state particles; distributions in helicity and Jackson frames) are presented for \epsilon= 161 MeV. The total cross sections are proportional to the volume of available three-body phase-space indicating that the transition matrix element does not change significantly in this range of excess energies. It is concluded from the differential data that the reaction proceeds dominantly via the N(1710)P_{11} and/or N(1720)P_{13} resonance(s); N(1650)S_{11} and \Delta(1600)P_{33} could also contribute.Comment: 15 pages, 10 figure
    • …
    corecore