30,123 research outputs found

    Schroedinger functional formalism with domain-wall fermion

    Get PDF
    Finite volume renormalization scheme is one of the most fascinating scheme for non-perturbative renormalization on lattice. By using the step scaling function one can follow running of renormalized quantities with reasonable cost. It has been established the Schroedinger functional is very convenient to define a field theory in a finite volume for the renormalization scheme. The Schroedinger functional, which is characterized by a Dirichlet boundary condition in temporal direction, is well defined and works well for the Yang-Mills theory and QCD with the Wilson fermion. However one easily runs into difficulties if one sets the same sort of the Dirichlet boundary condition for the overlap Dirac operator or the domain-wall fermion. In this paper we propose an orbifolding projection procedure to impose the Schroedinger functional Dirichlet boundary condition on the domain-wall fermion.Comment: 32 page

    Photoinjector-generation of a flat electron beam with transverse emittance ratio of 100

    Full text link
    The generation of a flat electron beam directly from a photoinjector is an attractive alternative to the electron damping ring as envisioned for linear colliders. It also has potential applications to light sources such as the generation of ultra-short x-ray pulses or Smith-Purcell free electron lasers. In this Letter, we report on the experimental generation of a flat-beam with a measured transverse emittance ratio of 100±20.2100\pm 20.2 for a bunch charge of ∌0.5\sim 0.5 nC; the smaller measured normalized root-mean-square emittance is ∌0.4\sim 0.4 ÎŒ\mum and is limited by the resolution of our experimental setup. The experimental data, obtained at the Fermilab/NICADD Photoinjector Laboratory, are compared with numerical simulations and the expected scaling laws.Comment: 5 pages, 3 figure

    Signal enhancement of the in-plane and out-of-plane Rayleigh wave components

    Get PDF
    Several groups have reported an enhancement of the ultrasonic Rayleigh wave when scanning close to a surface-breaking defect in a metal sample. This enhancement may be explained as an interference effect where the waves passing directly between source and receiver interfere with those waves reflected back from the defect. We present finite element models of the predicted enhancement when approaching a defect, along with experiments performed using electromagnetic acoustic transducers sensitive to either in-plane or out-of-plane motion. A larger enhancement of the in-plane motion than the out-of-plane motion is observed and can be explained by considering ultrasonic reflections and mode conversion at the defect

    Domain Wall Fermions with Exact Chiral Symmetry

    Get PDF
    We show how the standard domain wall action can be simply modified to allow arbitrarily exact chiral symmetry at finite fifth dimensional extent. We note that the method can be used for both quenched and dynamical calculations. We test the method using smooth and thermalized gauge field configurations. We also make comparisons of the performance (cost) of the domain wall operator for spectroscopy compared to other methods such as the overlap-Dirac operator and find both methods are comparable in cost.Comment: revtex, 37 pages, 11 color postscript figure

    Are Topological Charge Fluctuations in QCD Instanton Dominated?

    Get PDF
    We consider a recent proposal by Horv\'ath {\em et al.} to address the question whether topological charge fluctuations in QCD are instanton dominated via the response of fermions using lattice fermions with exact chiral symmetry, the overlap fermions. Considering several volumes and lattice spacings we find strong evidence for chirality of a finite density of low-lying eigenvectors of the overlap-Dirac operator in the regions where these modes are peaked. This result suggests instanton dominance of topological charge fluctuations in quenched QCD.Comment: LaTeX, 15 pages, 8 postscript figures, minor improvements, version to appear in PR

    Non-linear enhancement of laser generated ultrasonic Rayleigh waves by cracks

    Get PDF
    Laser generated ultrasound has been widely used for detecting cracks, surface and sub-surface defects in many different materials. It provides a non-contact wideband excitation source which can be focused into different geometries. Previous workers have reported enhancement of the laser generated Rayleigh wave when a crack is illuminated by pulsed laser beam irradiation. We demonstrate that the enhancement observed is due to a combination of source truncation, the free boundary condition at the edge of the crack and interference effects. Generating a Rayleigh wave over a crack can lead to enhancement of the amplitude of the Rayleigh wave signal, a shift in the dominant frequency of the wideband Rayleigh wave and strong enhancement of the high frequency components of the Rayleigh wave

    The quantum-mechanical basis of an extended Landau-Lifshitz-Gilbert equation for a current-carrying ferromagnetic wire

    Full text link
    An extended Landau-Lifshitz-Gilbert (LLG) equation is introduced to describe the dynamics of inhomogeneous magnetization in a current-carrying wire. The coefficients of all the terms in this equation are calculated quantum-mechanically for a simple model which includes impurity scattering. This is done by comparing the energies and lifetimes of a spin wave calculated from the LLG equation and from the explicit model. Two terms are of particular importance since they describe non-adiabatic spin-transfer torque and damping processes which do not rely on spin-orbit coupling. It is shown that these terms may have a significant influence on the velocity of a current-driven domain wall and they become dominant in the case of a narrow wall.Comment: 19 pages, 1 figur
    • 

    corecore