2,504 research outputs found

    Dominant Eigenvalue-Eigenvector Pair Estimation via Graph Infection

    Full text link
    We present a novel method to estimate the dominant eigenvalue and eigenvector pair of any non-negative real matrix via graph infection. The key idea in our technique lies in approximating the solution to the first-order matrix ordinary differential equation (ODE) with the Euler method. Graphs, which can be weighted, directed, and with loops, are first converted to its adjacency matrix A. Then by a naive infection model for graphs, we establish the corresponding first-order matrix ODE, through which A's dominant eigenvalue is revealed by the fastest growing term. When there are multiple dominant eigenvalues of the same magnitude, the classical power iteration method can fail. In contrast, our method can converge to the dominant eigenvalue even when same-magnitude counterparts exist, be it complex or opposite in sign. We conduct several experiments comparing the convergence between our method and power iteration. Our results show clear advantages over power iteration for tree graphs, bipartite graphs, directed graphs with periods, and Markov chains with spider-traps. To our knowledge, this is the first work that estimates dominant eigenvalue and eigenvector pair from the perspective of a dynamical system and matrix ODE. We believe our method can be adopted as an alternative to power iteration, especially for graphs.Comment: 13 pages, 8 figures, 3 table

    Structural, optical, magnetic and electrical properties of Zn1-x Co (x) O thin films

    Full text link
    Despite a considerable effort aiming at elucidating the nature of ferromagnetism in ZnO-based magnetic semiconductor, its origin still remains debatable. Although the observation of above room temperature ferromagnetism has been reported frequently in the literature by magnetometry measurement, so far there has been no report on correlated ferromagnetism in magnetic, optical and electrical measurements. In this paper, we investigate systematically the structural, optical, magnetic and electrical properties of Zn1-x Co (x) O:Al thin films prepared by sputtering with x ranging from 0 to 0.33. We show that correlated ferromagnetism is present only in samples with x > 0.25. In contrast, samples with x < 0.2 exhibit weak ferromagnetism only in magnetometry measurement which is absent in optical and electrical measurements. We demonstrate, by systematic electrical transport studies that carrier localization indeed occurs below 20-50 K for samples with x < 0.2; however, this does not lead to the formation of ferromagnetic phase in these samples with an electron concentration in the range of 6 x 10(19) cm(-3) 1 x 10(20) cm(-3). Detailed structural and optical transmission spectroscopy analyses revealed that the anomalous Hall effect observed in samples with x > 0.25 is due to the formation of secondary phases and Co clusters.Comment: 28 pages, 8 figure

    Large Area Roller Embossing of Multilayered Ceramic Green Composites

    Get PDF
    In this paper, we will report our achievements in developing large area patterning of multilayered ceramic green composites using roller embossing. The aim of our research is to pattern large area ceramic green composites using a modified roller laminating apparatus, which is compatible with screen printing machines, for integration of embossing and screen printing. The instrumentation of our roller embossing apparatus, as shown in Figure1, consists of roller 1 and rollers 2. Roller 1 is heated up to the desired embossing temperature ; roller 2 is, however, kept at room temperature. The mould is a nickel template manufactured by plating nickel-based micro patterns (height : 50 μ\mum) on a nickel film (thickness : 70 μ\mum) ; the substrate for the roller embossing is a multilayered Heraeus Heralock HL 2000 ceramic green composite. Comparing with the conventional simultaneous embossing, the advantages of roller embossing include : (1) low embossing force ; (2) easiness of demoulding ; (3) localized area in contact with heater ; and etc. We have demonstrated the capability of large area roller embossing with a panel size of 150mmx 150mm on the mentioned substrate. We have explored and confirmed the impact of parameters (feed speed, temperature of roller and applied pressure) to the pattern quality of roller embossing. Furthermore, under the optimized process parameters, we characterized the variations of pattern dimension over the panel area, and calculated a scaling factor in order to make the panel compatible with other processes. Figure 2 shows the embossed patterns on a 150mmx 150mm green ceramic panel.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/16838

    Selective interlayer ferromagnetic coupling between the Cu spins in YBa2_2 Cu3_3 O7x_{7-x} grown on top of La0.7_{0.7} Ca0.3_{0.3} MnO3_3

    Full text link
    Studies to date on ferromagnet/d-wave superconductor heterostructures focus mainly on the effects at or near the interfaces while the response of bulk properties to heterostructuring is overlooked. Here we use resonant soft x-ray scattering spectroscopy to reveal a novel c-axis ferromagnetic coupling between the in-plane Cu spins in YBa2_2 Cu3_3 O7x_{7-x} (YBCO) superconductor when it is grown on top of ferromagnetic La0.7_{0.7} Ca0.3_{0.3} MnO3_3 (LCMO) manganite layer. This coupling, present in both normal and superconducting states of YBCO, is sensitive to the interfacial termination such that it is only observed in bilayers with MnO_2but not with La0.7_{0.7} Ca0.3_{0.3} interfacial termination. Such contrasting behaviors, we propose, are due to distinct energetic of CuO chain and CuO2_2 plane at the La0.7_{0.7} Ca0.3_{0.3} and MnO2_2 terminated interfaces respectively, therefore influencing the transfer of spin-polarized electrons from manganite to cuprate differently. Our findings suggest that the superconducting/ferromagnetic bilayers with proper interfacial engineering can be good candidates for searching the theorized Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state in cuprates and studying the competing quantum orders in highly correlated electron systems.Comment: Please note the change of the title. Text might be slightly different from the published versio

    Load Sharing in Distributed Multimedia-on-Demand Systems

    Get PDF
    10.1109/69.846293IEEE Transactions on Knowledge and Data Engineering123410-428ITKE

    The expanding phenotype of MELAS caused by the m.3291T \u3e C mutation in the MT-TL1 gene

    Get PDF
    Crown Copyright © 2016 Published by Elsevier Inc. m.3291T \u3e C mutation in the MT-TL1 gene has been infrequently encountered in association with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS), however remains poorly characterized from a clinical perspective. In the following report we describe in detail the phenotypic features, long term follow up (\u3e 7 years) and management in a Caucasian family with MELAS due to the m.3291T \u3e C mutation and review the literature on m.3291T \u3e C mutation. The clinical phenotype in the proposita included overlapping features of MELAS, MERRF (Myoclonic epilepsy and ragged-red fiber syndrome), MNGIE (Mitochondrial neurogastrointestinal encephalopathy), KSS (Kearns-Sayre Syndrome) and CPEO (Chronic progressive external ophthalmoplegia)

    The Role of Federated Learning in a Wireless World with Foundation Models

    Full text link
    Foundation models (FMs) are general-purpose artificial intelligence (AI) models that have recently enabled multiple brand-new generative AI applications. The rapid advances in FMs serve as an important contextual backdrop for the vision of next-generation wireless networks, where federated learning (FL) is a key enabler of distributed network intelligence. Currently, the exploration of the interplay between FMs and FL is still in its nascent stage. Naturally, FMs are capable of boosting the performance of FL, and FL could also leverage decentralized data and computing resources to assist in the training of FMs. However, the exceptionally high requirements that FMs have for computing resources, storage, and communication overhead would pose critical challenges to FL-enabled wireless networks. In this article, we explore the extent to which FMs are suitable for FL over wireless networks, including a broad overview of research challenges and opportunities. In particular, we discuss multiple new paradigms for realizing future intelligent networks that integrate FMs and FL. We also consolidate several broad research directions associated with these paradigms.Comment: 8 pages, 5 figures, 1 tabl

    Investigation of campylobacter concisus gastric epithelial pathogenicity using AGS cells

    Get PDF
    Campylobacter concisus is an oral bacterium. Recent studies suggest that C. concisus may be involved in human gastric diseases. The mechanisms, however, by which C. concisus causes human gastric diseases have not been investigated. Here we examined the gastric epithelial pathogenicity of C. concisus using a cell culture model. Six C. concisus strains and the human gastric epithelial cell line AGS cells were used. IL-8 produced by AGS cells after incubation with C. concisus was measured using enzyme-linked immunosorbent assay (ELISA), and AGS cell apoptosis was determined by caspase 3/7 activities. The effects of C. concisus on actin arrangement in AGS cells was determined using fluorescence staining. The effects of C. concisus on global gene expression in AGS cells was determined by transcriptomic analysis and quantitative real-time PCR (qRT-PCR). The role of the upregulated CYP1A1 gene in gastric cancer survival was assessed using the Kaplan-Meier method. C. concisus induced production of IL-8 by AGS cells with strain variation. Significantly increased caspase 3/7 activities were observed in AGS cells incubated with C. concisus strains when compared to AGS cells without bacteria. C. concisus induced actin re-arrangement in AGS cells. C. concisus upregulated 30 genes in AGS cells and the upregulation of CYP1A1 gene was confirmed by qRT-PCR. The Kaplan-Meier analysis showed that upregulation of CYP1A1 gene is associated with worse survival in gastric cancer patients. Our findings suggest that C. concisus may play a role in gastric inflammation and the progression of gastric cancer. Further investigation in clinical studies is warranted
    corecore