26,528 research outputs found
DESIGN STATUS OF THE TPS CONTROL SYSTEM
Abstract The Taiwan photon Source (TPS) control system is undergoing design and implementation phase. The control system is based on EPICS toolkits. Selection of hardware platform and software components are in proceed. Testbed has set up and evaluate various selected hardware and software components. The control system will provide versatile environments for machine commissioning, operation, and research. The open architecture will facilitate machine upgrade, modification easily and minimize efforts for machine maintenance. Performance and reliability of the control system will be guaranteed from the design phase
Measurement of electron antineutrino oscillation based on 1230 days of operation of the Daya Bay experiment
A measurement of electron antineutrino oscillation by the Daya Bay Reactor Neutrino Experiment is described in detail. Six 2.9-GWth nuclear power reactors of the Daya Bay and Ling Ao nuclear power facilities served as intense sources of nu((e) over bar)\u27s. Comparison of the (v) over bare rate and energy spectrum measured by antineutrino detectors far from the nuclear reactors (similar to 1500-1950 m) relative to detectors near the reactors (similar to 350-600 m) allowed a precise measurement of (v) over bar (e) disappearance. More than 2.5 million (v) over bar (e) inverse beta-decay interactions were observed, based on the combination of 217 days of operation of six antineutrino detectors (December, 2011-July, 2012) with a subsequent 1013 days using the complete configuration of eight detectors (October, 2012-July, 2015). The (v) over bar (e) rate observed at the far detectors relative to the near detectors showed a significant deficit, R = 0.949 +/- 0.002(stat) +/- 0.002(syst). The energy dependence of (v) over bar (e) disappearance showed the distinct variation predicted by neutrino oscillation. Analysis using an approximation for the three-flavor oscillation probability yielded the flavor-mixing angle sin(2)2 theta(13) = 0.0841 +/- 0.0027(stat) +/- 0.0019(syst) and the effective neutrino mass-squared difference of broken vertical bar Delta m(ee)(2)vertical bar = (2.50 +/- 0.06(stat) +/- 0.06(syst)) x 10(-3) eV(2). Analysis using the exact three-flavor probability found Delta m(32)(2) = (2.45 +/- 0.06(stat) +/- 0.06d(syst)) x 10(-3) eV(2) assuming the normal neutrino mass hierarchy and Delta m(32)(2) = (-2.56 +/- 0.06(stat) +/- 0.06(syst)) x 10(-3) eV(2) for the inverted hierarchy
Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay
A new measurement of the reactor antineutrino flux and energy spectrum by the Daya Bay reactor neutrino experiment is reported. The antineutrinos were generated by six 2.9 GW(th) nuclear reactors and detected by eight antineutrino detectors deployed in two near (560 m and 600 m flux-weighted baselines) and one far (1640 m flux-weighted baseline) underground experimental halls. With 621 days of data, more than 1.2 million inverse beta decay (IBD) candidates were detected. The IBD yield in the eight detectors was measured, and the ratio of measured to predicted flux was found to be 0.946 +/- 0.020 (0.992 +/- 0.021) for the Huber+Mueller (ILL+Vogel) model. A 2.9 sigma deviation was found in the measured IBD positron energy spectrum compared to the predictions. In particular, an excess of events in the region of 4-6 MeV was found in the measured spectrum, with a local significance of 4.4 sigma. A reactor antineutrino spectrum weighted by the IBD cross section is extracted for model-independent predictions
- …