194 research outputs found

    Gaps and excitations in fullerides with partially filled bands : NMR study of Na2C60 and K4C60

    Full text link
    We present an NMR study of Na2C60 and K4C60, two compounds that are related by electron-hole symmetry in the C60 triply degenerate conduction band. In both systems, it is known that NMR spin-lattice relaxation rate (1/T1) measurements detect a gap in the electronic structure, most likely related to singlet-triplet excitations of the Jahn-Teller distorted (JTD) C60^{2-} or C60^{4-}. However, the extended temperature range of the measurements presented here (10 K to 700 K) allows to reveal deviations with respect to this general trend, both at high and low temperatures. Above room temperature, 1/T1 deviates from the activated law that one would expect from the presence of the gap and saturates. In the same temperature range, a lowering of symmetry is detected in Na2C60 by the appearance of quadrupole effects on the 23Na spectra. In K4C60, modifications of the 13C spectra lineshapes also indicate a structural modification. We discuss this high temperature deviation in terms of a coupling between JTD and local symmetry. At low temperatures, 1/T1_1T tends to a constant value for Na2C60, both for 13C and 23Na NMR. This indicates a residual metallic character, which emphasizes the proximity of metallic and insulting behaviors in alkali fullerides.Comment: 12 pages, 13 figure

    Surface charging of thick porous water ice layers relevant for ion sputtering experiments

    Get PDF
    We use a laboratory facility to study the sputtering properties of centimeter-thick porous water ice subjected to the bombardment of ions and electrons to better understand the formation of exospheres of the icy moons of Jupiter. Our ice samples are as similar as possible to the expected moon surfaces but surface charging of the samples during ion irradiation may distort the experimental results. We therefore monitor the time scales for charging and dis- charging of the samples when subjected to a beam of ions. These experiments allow us to derive an electric conductivity of deep porous ice layers. The results imply that electron irradiation and sputtering play a non-negligible role for certain plasma conditions at the icy moons of Jupiter. The observed ion sputtering yields from our ice samples are similar to previous experiments where compact ice films were sputtered off a micro-balance.Comment: arXiv admin note: text overlap with arXiv:1509.0400

    Role of dynamic Jahn-Teller distortions in Na2C60 and Na2CsC60 studied by NMR

    Full text link
    Through 13C NMR spin lattice relaxation (T1) measurements in cubic Na2C60, we detect a gap in its electronic excitations, similar to that observed in tetragonal A4C60. This establishes that Jahn-Teller distortions (JTD) and strong electronic correlations must be considered to understand the behaviour of even electron systems, regardless of the structure. Furthermore, in metallic Na2CsC60, a similar contribution to T1 is also detected for 13C and 133Cs NMR, implying the occurence of excitations typical of JT distorted C60^{2-} (or equivalently C60^{4-}). This supports the idea that dynamic JTD can induce attractive electronic interactions in odd electron systems.Comment: 3 figure

    Mn local moments prevent superconductivity in iron-pnictides Ba(Fe 1-x Mn x)2As2

    Full text link
    75As nuclear magnetic resonance (NMR) experiments were performed on Ba(Fe1-xMnx)2As2 (xMn = 2.5%, 5% and 12%) single crystals. The Fe layer magnetic susceptibility far from Mn atoms is probed by the75As NMR line shift and is found similar to that of BaFe2As2, implying that Mn does not induce charge doping. A satellite line associated with the Mn nearest neighbours (n.n.) of 75As displays a Curie-Weiss shift which demonstrates that Mn carries a local magnetic moment. This is confirmed by the main line broadening typical of a RKKY-like Mn-induced staggered spin polarization. The Mn moment is due to the localization of the additional Mn hole. These findings explain why Mn does not induce superconductivity in the pnictides contrary to other dopants such as Co, Ni, Ru or K.Comment: 6 pages, 7 figure

    Comment on "Isoelectronic Ru substitution at Fe-site in Sm(Fe1x_{1-x}Rux_x)AsO0.85_{0.85}F0.15_{0.15} compound and its effects on structural, superconducting and normal state properties" (arXiv:1004.1978)

    Full text link
    Based on the five-orbital model, we derive the reduced impurity scattering rate g=zγ/2πTc0g=z\gamma/2\pi T_{c0} in Sm(Fe1x_{1-x}Rux_{x})AsO0.85_{0.85}F0.15_{0.15} from the residual resistivity. At x=0x=0, the transition temperature is Tc0=50T_{c0}=50 K. For 0.05Tc/Tc0>0.30.05T_{c}/T_{c0}>0.3) the obtained value of gg ranges from 1.5 to 2.9, which suggests that the s±s_\pm-wave state cannot survive. We point out that the magnetoresistance frequently gives an underestimated value of gg in correlated electron systems.Comment: 2 page

    Fermi Surface reconstruction in the CDW state of CeTe3 observed by photoemission

    Full text link
    CeTe3 is a layered compound where an incommensurate Charge Density Wave (CDW) opens a large gap (400 meV) in optimally nested regions of the Fermi Surface (FS), whereas other sections with poorer nesting remain ungapped. Through Angle-Resolved Photoemission, we identify bands backfolded according to the CDW periodicity. They define FS pockets formed by the intersection of the original FS and its CDW replica. Such pockets illustrate very directly the role of nesting in the CDW formation but they could not be detected so far in a CDW system. We address the reasons for the weak intensity of the folded bands, by comparing different foldings coexisting in CeTe3

    The degenerate 3-band Hubbard model with "anti-Hund's rule" interactions; a model for AxC60

    Full text link
    We consider the orbitally degenerate 3-band Hubbard model with on-site interactions which favor low spin and low orbital angular momentum using standard second order perturbation theory in the large Hubbard-U limit. At even integer filling this model is a Mott insulator with a non-degenerate ground state that allows for a simple description of particle-hole excitations as well as gapped spin and orbital modes. We find that the Mott gap is generally indirect and that the single particle spectrum at low doping reappears close to even filling but rescaled by a factor 2/3 or 1/3. The model captures the basic phenomenology of the Mott insulating and metallic fullerides AxC60. This includes the existence of a smaller spin gap and larger charge gap at even integer filling, the fact that odd integer stoichiometries are generally metallic while even are insulating, as well as the rapid suppression of the density of states and superconducting transition temperatures with doping away from x=3.Comment: Revised with additional reference

    Influence of local fullerene orientation on the electronic properties of A3C60 compounds

    Full text link
    We have investigated sodium containing fullerene superconductors Na2AC60, A = Cs, Rb, and K, by Na-23 nuclear magnetic resonance (NMR) spectroscopy at 7.5 T in the temperature range of 10 to 400 K. Despite the structural differences from the Rb3C60 class of fullerene superconductors, in these compounds the NMR line of the tetrahedrally coordinated alkali nuclei also splits into two lines (T and T') at low temperature. In Na2CsC60 the splitting occurs at 170 K; in the quenched cubic phase of Na2RbC60 and Na2KC60 we observe split lines at 80 K. Detailed investigations of the spectrum, spin-spin and spin-lattice relaxation as well as spin-echo double resonance (SEDOR) in Na2CsC60 we show that these two different tetrahedral sites are mixed on a microscopic scale. The T and T' sites differ in the orientation of first-neighbor C60 molecules. We present evidence that the orientations of neighboring molecules are uncorrelated. Thermally activated molecular reorientations cause an exchange between the T and T' sites and motional narrowing at high temperature. We infer the same activation energy, 3300 K, in the temperature range 125 to 300 K. The spin lattice relaxation rate is the same for T and T' down to 125 K but different below. Both the spin-lattice relaxation rate and Knight shift are strongly temperature dependent in the whole range investigated. We interpret this temperature variation by the effect of phonon excitations involving the rigid librational motion of the C60 molecules. By extending the understanding of the structure and molecular dynamics of C60 superconductors, these results may help in clarifying the effects of the structure on the superconducting properties.Comment: 13 pages, 10 figures, submitted to PR

    Nature of the bad metallic behavior of Fe_{1.06}Te inferred from its evolution in the magnetic state

    Full text link
    We investigate with angle resolved photoelectron spectroscopy the change of the Fermi Surface (FS) and the main bands from the paramagnetic (PM) state to the antiferromagnetic (AFM) occurring below 72 K in Fe_{1.06}Te. The evolution is completely different from that observed in iron-pnictides as nesting is absent. The AFM state is a rather good metal, in agreement with our magnetic band structure calculation. On the other hand, the PM state is very anomalous with a large pseudogap on the electron pocket that closes in the AFM state. We discuss this behavior in connection with spin fluctuations existing above the magnetic transition and the correlations predicted in the spin-freezing regime of the incoherent metallic state

    Evidence for distinct polymer chain orientations in KC60 and RbC60

    Full text link
    The KC60 and RbC60 polymer phases exhibit contrasting electronic properties while powder diffraction studies have revealed no definite structural difference. We have performed single crystal X-ray diffraction and diffuse scattering studies of these compounds. It is found that KC60 and RbC60 possess different chain orientations about their axes, which are described by distinct space groups Pmnn and I2/m, respectively. Such a structural difference will be of great importance to a complete understanding of the physical properties.Comment: To be published in Phys. Rev. Let
    corecore