15 research outputs found

    Stable vortex structures in colliding self-gravitating Bose-Einstein condensates

    Full text link
    A key feature of ultra-light dark matter composed by bosons is the formation of superfluid Bose-Einstein condensate (BEC) structures on galactic scales. We study collisions of BEC solitonic and vortex structures in the framework of the Gross-Pitaevskii-Poisson model. It is found that the superfluid nature of bosonic dark matter leads to the formation of quantized vortex lines and vortex rings in interference patterns formed during collisions. Calculating the gravitational wave luminosity, we demonstrated that quantum interference patterns affect notably the gravitational wave radiation. We reveal that superfluid self-gravitating BECs can form stable localized vortex structures which remain robust even after a head-on collision.Comment: 9 pages, 8 figure

    Improved convergence of scattering calculations in the oscillator representation

    Full text link
    The Schr\"odinger equation for two and tree-body problems is solved for scattering states in a hybrid representation where solutions are expanded in the eigenstates of the harmonic oscillator in the interaction region and on a finite difference grid in the near-- and far--field. The two representations are coupled through a high--order asymptotic formula that takes into account the function values and the third derivative in the classical turning points. For various examples the convergence is analyzed for various physics problems that use an expansion in a large number of oscillator states. The results show significant improvement over the JM-ECS method [Bidasyuk et al, Phys. Rev. C 82, 064603 (2010)]
    corecore