130 research outputs found

    From plasmodesma geometry to effective symplasmic permeability through biophysical modelling

    Get PDF
    Regulation of molecular transport via intercellular channels called plasmodesmata (PDs) is important for both coordinating developmental and environmental responses among neighbouring cells, and isolating (groups of) cells to execute distinct programs. Cell-to-cell mobility of fluorescent molecules and PD dimensions (measured from electron micrographs) are both used as methods to predict PD transport capacity (i.e., effective symplasmic permeability), but often yield very different values. Here, we build a theoretical bridge between both experimental approaches by calculating the effective symplasmic permeability from a geometrical description of individual PDs and considering the flow towards them. We find that a dilated central region has the strongest impact in thick cell walls and that clustering of PDs into pit fields strongly reduces predicted permeabilities. Moreover, our open source multi-level model allows to predict PD dimensions matching measured permeabilities and add a functional interpretation to structural differences observed between PDs in different cell walls

    Callose deposition and symplastic connectivity are regulated prior to lateral root emergence.

    Get PDF
    Root growth is critical for the effective exploitation of the rhizosphere and productive plant growth. Our recent work(1) showed that root architecture was dependent upon the degree of symplastic connectivity between neighboring cells during the specification of lateral root primordia and was affected by genes regulating callose deposition at plasmodesmata (PD). Here we provide additional evidence that both symplastic connectivity and callose are also important during the later phase of lateral root development: emergence. Callose immunolocalization assays indicated that transient symplastic isolation of the primordium occur immediately prior to emergence through the overlaying tissues to produce the mature lateral root.(1) Here we could corroborate these results by analyzing the mobility of a symplastic tracer and the expression of PD genes in lateral roots and in response to auxins. Moreover, we show that altering callose deposition affects the number of emerged lateral roots suggesting that PD regulation is important for emergence

    Evaluación nutricional de ensilajes con diferentes niveles de inclusión de cáscara de naranja (Citrus sinensis) y digestibilidad in vivo como alternativa energética para alimentación de cerdos

    Get PDF
    El presente estudio evaluó el valor nutricional de dietas con base en cáscara de naranja (Citrus sinensis), en ensilaje. Los tratamientos consistieron en 5 niveles de inclusión de cáscara de naranja 0, 10, 20, 30 y 40 %; se estimó caracterización organoléptica (color y olor durante los tiempos de fermentación (1, 3, 7, 21 y 28 días). Conjuntamente se determinó pH, materia seca (MS), proteína cruda (PC), extracto etéreo (EE), fibra cruda (FC), cenizas (CEN) y extracto no nitrogenado (ENN). Se analizaron coeficientes de digestibilidad (CD), con la técnica de bolsa dacrón móvil (TBDM) y un cerdo de 25 kg de peso, al cual previamente se le implantó una cánula duodenal; para esta prueba se escogieron los tiempos de fermentación (3, 7, 21 días) y los tratamientos con inclusión de cáscara de naranja T2 (10 %), T3 (20 %), T4 (30 %) y el control. Por último se realizó aproxima- ción económica de dietas. La evaluación organoléptica demostró variabilidad en color, debido al cítrico presente en los tratamientos; el olor fue influenciado por la presencia de ácidos, que proporcionaron olor agradable. El análisis químico fue significativo (p<0.01), entre tratamientos y tiempos de fermentación, resultando un compor- tamiento favorable para T3 con valores promedios de pH (4,19), MS (49.7 %), PC (23.3 %), FC (1.8 %), EE (4.4%), CEN (5.3 %) y ENN (62.29 %). Los tratamientos T2 y T3 reportaron CD mayores al control. Se propone el ensilaje cítrico con nivel de 20% para dietas iniciadoras de cerdos

    Brassinosteroids en route

    Get PDF
    Brassinosteroid (BR) hormones promote root growth by controlling meristem size and cell elongation, but the mechanism of BR transport remains elusive. A new study shows that BR precursors move via intercellular pores called plasmodesmata to modulate BR cellular levels and their signaling functions

    Emerging models on the regulation of intercellular transport by plasmodesmata-associated callose

    Get PDF
    The intercellular transport of molecules through membranous channels that traverse the cell walls—so-called plasmodesmata—is of fundamental importance for plant development. Regulation of plasmodesmata aperture (and transport capacity) is mediated by changes in the flanking cell walls, mainly via the synthesis/degradation (turnover) of the (1,3)-β-glucan polymer callose. The role of callose in organ development and in plant environmental responses is well recognized, but detailed understanding of the mechanisms regulating its accumulation and its effects on the structure and permeability of the channels is still missing. We compiled information on the molecular components and signalling pathways involved in callose turnover at plasmodesmata and, more generally, on the structural and mechanical properties of (1,3)-β-glucan polymers in cell walls. Based on this revision, we propose models integrating callose, cell walls, and the regulation of plasmodesmata structure and intercellular communication. We also highlight new tools and interdisciplinary approaches that can be applied to gain further insight into the effects of modifying callose in cell walls and its consequences for intercellular signalling

    Callose metabolism and the regulation of cell walls and plasmodesmata during plant mutualistic and pathogenic interactions

    Get PDF
    Cell walls are essential for plant growth and development, providing support and protection from external environments. Callose is a glucan that accumulates in specialized cell wall microdomains including around intercellular pores called plasmodesmata. Despite representing a small percentage of the cell wall (~0.3% in the model plant Arabidopsis thaliana), callose accumulation regulates important biological processes such as phloem and pollen development, cell division, organ formation, responses to pathogenic invasion and to changes in nutrients and toxic metals in the soil. Callose accumulation modifies cell wall properties and restricts plasmodesmata aperture, affecting the transport of signaling proteins and RNA molecules that regulate plant developmental and environmental responses. Although the importance of callose, at and outside plasmodesmata cell walls, is widely recognized, the underlying mechanisms controlling changes in its synthesis and degradation are still unresolved. In this review, we explore the most recent literature addressing callose metabolism with a focus on the molecular factors affecting callose accumulation in response to mutualistic symbionts and pathogenic elicitors. We discuss commonalities in the signaling pathways, identify research gaps and highlight opportunities to target callose in the improvement of plant responses to beneficial versus pathogenic microbes

    Plasma membrane-associated receptor like kinases relocalize to plasmodesmata in response to osmotic stress

    Get PDF
    Plasmodesmata act as key elements in intercellular communication, coordinating processes related to plant growth, development, and responses to environmental stresses. While many of the developmental, biotic, and abiotic signals are primarily perceived at the plasma membrane (PM) by receptor proteins, plasmodesmata also cluster receptor-like activities; whether these two pathways interact is currently unknown. Here we show that specific PM-located Leucine-Rich-Repeat Receptor-Like-Kinases (LRR-RLKs), QSK1 and IMK2, which under optimal growth conditions are absent from plasmodesmata, rapidly relocate and cluster to the pores in response to osmotic stress. This process is remarkably fast, is not a general feature of PM-associated proteins, and is independent of sterol- and sphingolipid- membrane composition. Focusing on QSK1, previously reported to be involved in stress responses, we show that relocalisation in response to mannitol depends on QSK1 phosphorylation. Loss-of-function mutation in QSK1 results in delayed lateral root (LR) development and the mutant is affected in the root response to mannitol stress. Callose-mediated plasmodesmata regulation is known to regulate LR development. We found that callose levels are reduced in the qsk1 mutant background with a root phenotype resembling ectopic expression of PdBG1, an enzyme that degrades callose at the pores. Both the LR and callose phenotypes can be complemented by expression of wild-type and phosphomimic QSK1 variants, but not by phosphodead QSK1 mutant which fails to relocalise at plasmodesmata. Together the data indicate that re-organisation of RLKs to plasmodesmata is important for the regulation of callose and LR development as part of the plant response to osmotic stress

    A comparative meta-proteomic pipeline for the identification of plasmodesmata proteins and regulatory conditions in diverse plant species

    Get PDF
    Background A major route for cell-to-cell signalling in plants is mediated by cell wall-embedded pores termed plasmodesmata forming the symplasm. Plasmodesmata regulate the plant development and responses to the environment; however, our understanding of what factors or regulatory cues affect their structure and permeability is still limited. In this paper, a meta-analysis was carried out for the identification of conditions affecting plasmodesmata transport and for the in silico prediction of plasmodesmata proteins in species for which the plasmodesmata proteome has not been experimentally determined. Results Using the information obtained from experimental proteomes, an analysis pipeline (named plasmodesmata in silico proteome 1 or PIP1) was developed to rapidly generate candidate plasmodesmata proteomes for 22 plant species. Using the in silico proteomes to interrogate published transcriptomes, gene interaction networks were identified pointing to conditions likely affecting plasmodesmata transport capacity. High salinity, drought and osmotic stress regulate the expression of clusters enriched in genes encoding plasmodesmata proteins, including those involved in the metabolism of the cell wall polysaccharide callose. Experimental determinations showed restriction in the intercellular transport of the symplasmic reporter GFP and enhanced callose deposition in Arabidopsis roots exposed to 75-mM NaCl and 3% PEG (polyethylene glycol). Using PIP1 and transcriptome meta-analyses, candidate plasmodesmata proteins for the legume Medicago truncatula were generated, leading to the identification of Medtr1g073320, a novel receptor-like protein that localises at plasmodesmata. Expression of Medtr1g073320 affects callose deposition and the root response to infection with the soil-borne bacteria rhizobia in the presence of nitrate. Conclusions Our study shows that combining proteomic meta-analysis and transcriptomic data can be a valuable tool for the identification of new proteins and regulatory mechanisms affecting plasmodesmata function. We have created the freely accessible pipeline PIP1 as a resource for the screening of experimental proteomes and for the in silico prediction of PD proteins in diverse plant species

    Unconventional Transport Routes of Soluble and Membrane Proteins and Their Role in Developmental Biology

    Get PDF
    Many proteins and cargoes in eukaryotic cells are secreted through the conventional secretory pathway that brings proteins and membranes from the endoplasmic reticulum to the plasma membrane, passing through various cell compartments, and then the extracellular space. The recent identification of an increasing number of leaderless secreted proteins bypassing the Golgi apparatus unveiled the existence of alternative protein secretion pathways. Moreover, other unconventional routes for secretion of soluble or transmembrane proteins with initial endoplasmic reticulum localization were identified. Furthermore, other proteins normally functioning in conventional membrane traffic or in the biogenesis of unique plant/fungi organelles or in plasmodesmata transport seem to be involved in unconventional secretory pathways. These alternative pathways are functionally related to biotic stress and development, and are becoming more and more important in cell biology studies in yeast, mammalian cells and in plants. The city of Lecce hosted specialists working on mammals, plants and microorganisms for the inaugural meeting on "Unconventional Protein and Membrane Traffic" (UPMT) during 4-7 October 2016. The main aim of the meeting was to include the highest number of topics, summarized in this report, related to the unconventional transport routes of protein and membranes

    Tightening the pores to unload the phloem

    Get PDF
    Root growth depends on the shoot-to-root transport of assimilates through the phloem, which is connected to the meristems by plasmodesmata pores. A PHLOEM UNLOADING MODULATOR is now identified to regulate plasmodesmata internal organisation, leading to pores that appear tighter but are more efficient for transport
    corecore