102 research outputs found

    Using Superconducting Qubit Circuits to Engineer Exotic Lattice Systems

    Full text link
    We propose an architecture based on superconducting qubits and resonators for the implementation of a variety of exotic lattice systems, such as spin and Hubbard models in higher or fractal dimensions and higher-genus topologies. Spin systems are realized naturally using qubits, while superconducting resonators can be used for the realization of Bose-Hubbard models. Fundamental requirements for these designs, such as controllable interactions between arbitrary qubit pairs, have recently been implemented in the laboratory, rendering our proposals feasible with current technology.Comment: 7 pages (two-column), 3 figure

    Detecting mode entanglement: The role of coherent states, superselection rules and particle statistics

    Full text link
    We discuss the possibility of observing quantum nonlocality using the so-called mode entanglement, analyzing the differences between different types of particles in this context. We first discuss the role of coherent states in such experiments, and we comment on the existence of coherent states in nature. The discussion of coherent states naturally raises questions about the role of particle statistics in this problem. Although the Pauli exclusion principle precludes coherent states with a large number of fermionic particles, we find that a large number of fermionic coherent states, each containing at most one particle, can be used to achieve the same effect as a bosonic coherent state for the purposes of this problem. The discussion of superselection rules arises naturally in this context, because their applicability to a given situation prohibits the use of coherent states. This limitation particularly affects the scenario that we propose for detecting the mode entanglement of fermionic particles.Comment: 7 pages (two-column

    Non-Markovian entanglement dynamics in coupled superconducting qubit systems

    Full text link
    We theoretically analyze the entanglement generation and dynamics by coupled Josephson junction qubits. Considering a current-biased Josephson junction (CBJJ), we generate maximally entangled states. In particular, the entanglement dynamics is considered as a function of the decoherence parameters, such as the temperature, the ratio rωc/ω0r\equiv\omega_c/\omega_0 between the reservoir cutoff frequency ωc\omega_c and the system oscillator frequency ω0\omega_0, % between ω0\omega_0 the characteristic frequency of the %quantum system of interest, and ωc\omega_c the cut-off frequency of %Ohmic reservoir and the energy levels split of the superconducting circuits in the non-Markovian master equation. We analyzed the entanglement sudden death (ESD) and entanglement sudden birth (ESB) by the non-Markovian master equation. Furthermore, we find that the larger the ratio rr and the thermal energy kBTk_BT, the shorter the decoherence. In this superconducting qubit system we find that the entanglement can be controlled and the ESD time can be prolonged by adjusting the temperature and the superconducting phases Φk\Phi_k which split the energy levels.Comment: 13 pages, 3 figure

    Localization of the relative phase via measurements

    Full text link
    When two independently-prepared Bose-Einstein condensates are released from their corresponding traps, the absorbtion image of the overlapping clouds presents an interference pattern. Here we analyze a model introduced by Javanainen and Yoo (J. Javanainen and S. M. Yoo, Phys. Rev. Lett. 76, 161 (1996)), who considered two atomic condensates described by plane waves propagating in opposite directions. We present an analytical argument for the measurement-induced breaking of the relative phase symmetry in this system, demonstrating how the phase gets localized after a large enough number of detection events.Comment: 8 pages, 1 figur

    Interqubit coupling mediated by a high-excitation-energy quantum object

    Full text link
    We consider a system composed of two qubits and a high-excitation-energy quantum object used to mediate coupling between the qubits. We treat the entire system quantum mechanically and analyze the properties of the eigenvalues and eigenstates of the total Hamiltonian. After reproducing well-known results concerning the leading term in the mediated coupling, we obtain an expression for the residual coupling between the qubits in the off state. We also analyze the entanglement between the three objects, i.e. the two qubits and the coupler, in the eigenstates of the total Hamiltonian. Although we focus on the application of our results to the recently realized parametric-coupling scheme with two qubits, we also discuss extensions of our results to harmonic-oscillator couplers, couplers that are near resonance with the qubits and multi-qubit systems. In particular, we find that certain errors that are absent for a two-qubit system arise when dealing with multi-qubit systems.Comment: 15 pages (two-column

    Teleportation of a quantum state of a spatial mode with a single massive particle

    Full text link
    Mode entanglement exists naturally between regions of space in ultra-cold atomic gases. It has, however, been debated whether this type of entanglement is useful for quantum protocols. This is due to a particle number superselection rule that restricts the operations that can be performed on the modes. In this paper, we show how to exploit the mode entanglement of just a single particle for the teleportation of an unknown quantum state of a spatial mode. We detail how to overcome the superselection rule to create any initial quantum state and how to perform Bell state analysis on two of the modes. We show that two of the four Bell states can always be reliably distinguished, while the other two have to be grouped together due to an unsatisfied phase matching condition. The teleportation of an unknown state of a quantum mode thus only succeeds half of the time.Comment: 12 pages, 1 figure, this paper was presented at TQC 2010 and extends the work of Phys. Rev. Lett. 103, 200502 (2009

    Two-qubit gate operations in superconducting circuits with strong coupling and weak anharmonicity

    Full text link
    We investigate theoretically the implementation of two-qubit gates in a system of two coupled superconducting qubits. In particular, we analyze two-qubit gate operations under the condition that the coupling strength is comparable to or even larger than the anharmonicity of the qubits. By numerically solving the time-dependent Schr\"odinger equation, we obtain the dependence of the two-qubit gate fidelity on the system parameters in the case of direct and indirect qubit-qubit coupling. Our numerical results can be used to identify the "safe" parameter regime for experimentally implementing two-qubit gates with high fidelity in these systems

    Reverse quantum state engineering using electronic feedback loops

    Get PDF
    We propose an all-electronic technique to manipulate and control interacting quantum systems by unitary single-jump feedback conditioned on the outcome of a capacitively coupled electrometer and in particular a single-electron transistor. We provide a general scheme to stabilize pure states in the quantum system and employ an effective Hamiltonian method for the quantum master equation to elaborate on the nature of stabilizable states and the conditions under which state purification can be achieved. The state engineering within the quantum feedback scheme is shown to be linked with the solution of an inverse eigenvalue problem. Two applications of the feedback scheme are presented in detail: (i) stabilization of delocalized pure states in a single charge qubit and (ii) entanglement stabilization in two coupled charge qubits. In the latter example we demonstrate the stabilization of a maximally entangled Bell state for certain detector positions and local feedback operations.Comment: 23 pages, 6 figures, to be published by New Journal of Physics (2013

    Manipulating a qubit through the backaction of sequential partial measurements and real-time feedback

    Full text link
    Quantum measurements not only extract information from a system but also alter its state. Although the outcome of the measurement is probabilistic, the backaction imparted on the measured system is accurately described by quantum theory. Therefore, quantum measurements can be exploited for manipulating quantum systems without the need for control fields. We demonstrate measurement-only state manipulation on a nuclear spin qubit in diamond by adaptive partial measurements. We implement the partial measurement via tunable correlation with an electron ancilla qubit and subsequent ancilla readout. We vary the measurement strength to observe controlled wavefunction collapse and find post-selected quantum weak values. By combining a novel quantum non-demolition readout on the ancilla with real-time adaption of the measurement strength we realize steering of the nuclear spin to a target state by measurements alone. Besides being of fundamental interest, adaptive measurements can improve metrology applications and are key to measurement-based quantum computing.Comment: 6 pages, 4 figure
    corecore