38 research outputs found

    Protein Phosphatase-1 Activates CDK9 by Dephosphorylating Ser175

    Get PDF
    The cyclin-dependent kinase CDK9/cyclin T1 induces HIV-1 transcription by phosphorylating the carboxyterminal domain (CTD) of RNA polymerase II (RNAPII). CDK9 activity is regulated by protein phosphatase-1 (PP1) which was previously shown to dephosphorylate CDK9 Thr186. Here, we analyzed the effect of PP1 on RNAPII phosphorylation and CDK9 activity. The selective inhibition of PP1 by okadaic acid and by NIPP1 inhibited phosphorylation of RNAPII CTD in vitro and in vivo. Expression of the central domain of NIPP1 in cultured cells inhibited the enzymatic activity of CDK9 suggesting its activation by PP1. Comparison of dephosphorylation of CDK9 phosphorylated by (32P) in vivo and dephosphorylation of CDK9's Thr186 analyzed by Thr186 phospho-specific antibodies, indicated that a residue other than Thr186 might be dephosphorylated by PP1. Analysis of dephosphorylation of phosphorylated peptides derived from CDK9's T-loop suggested that PP1 dephosphorylates CDK9 Ser175. In cultured cells, CDK9 was found to be phosphorylated on Ser175 as determined by combination of Hunter 2D peptide mapping and LC-MS analysis. CDK9 S175A mutant was active and S175D – inactive, and dephosphorylation of CDK9's Ser175 upregulated HIV-1 transcription in PP1-dependent manner. Collectively, our results point to CDK9 Ser175 as novel PP1-regulatory site which dephosphorylation upregulates CDK9 activity and contribute to the activation of HIV-1 transcription

    Small Molecules Targeted to a Non-Catalytic “RVxF” Binding Site of Protein Phosphatase-1 Inhibit HIV-1

    Get PDF
    HIV-1 Tat protein recruits host cell factors including CDK9/cyclin T1 to HIV-1 TAR RNA and thereby induces HIV-1 transcription. An interaction with host Ser/Thr protein phosphatase-1 (PP1) is critical for this function of Tat. PP1 binds to a Tat sequence, Q35VCF38, which resembles the PP1-binding “RVxF” motif present on PP1-binding regulatory subunits. We showed that expression of PP1 binding peptide, a central domain of Nuclear Inhibitor of PP1, disrupted the interaction of HIV-1 Tat with PP1 and inhibited HIV-1 transcription and replication. Here, we report small molecule compounds that target the “RVxF”-binding cavity of PP1 to disrupt the interaction of PP1 with Tat and inhibit HIV-1 replication. Using the crystal structure of PP1, we virtually screened 300,000 compounds and identified 262 small molecules that were predicted to bind the “RVxF”-accommodating cavity of PP1. These compounds were then assayed for inhibition of HIV-1 transcription in CEM T cells. One of the compounds, 1H4, inhibited HIV-1 transcription and replication at non-cytotoxic concentrations. 1H4 prevented PP1-mediated dephosphorylation of a substrate peptide containing an RVxF sequence in vitro. 1H4 also disrupted the association of PP1 with Tat in cultured cells without having an effect on the interaction of PP1 with the cellular regulators, NIPP1 and PNUTS, or on the cellular proteome. Finally, 1H4 prevented the translocation of PP1 to the nucleus. Taken together, our study shows that HIV- inhibition can be achieved through using small molecules to target a non-catalytic site of PP1. This proof-of-principle study can serve as a starting point for the development of novel antiviral drugs that target the interface of HIV-1 viral proteins with their host partners

    Matrin 3 is a co-factor for HIV-1 Rev in regulating post-transcriptional viral gene expression

    Get PDF
    Post-transcriptional regulation of HIV-1 gene expression is mediated by interactions between viral transcripts and viral/cellular proteins. For HIV-1, post-transcriptional nuclear control allows for the export of intron-containing RNAs which are normally retained in the nucleus. Specific signals on the viral RNAs, such as instability sequences (INS) and Rev responsive element (RRE), are binding sites for viral and cellular factors that serve to regulate RNA-export. The HIV-1 encoded viral Rev protein binds to the RRE found on unspliced and incompletely spliced viral RNAs. Binding by Rev directs the export of these RNAs from the nucleus to the cytoplasm. Previously, Rev co-factors have been found to include cellular factors such as CRM1, DDX3, PIMT and others. In this work, the nuclear matrix protein Matrin 3 is shown to bind Rev/RRE-containing viral RNA. This binding interaction stabilizes unspliced and partially spliced HIV-1 transcripts leading to increased cytoplasmic expression of these viral RNAs

    Bryostatin Modulates Latent HIV-1 Infection via PKC and AMPK Signaling but Inhibits Acute Infection in a Receptor Independent Manner

    Get PDF
    HIV's ability to establish long-lived latent infection is mainly due to transcriptional silencing in resting memory T lymphocytes and other non dividing cells including monocytes. Despite an undetectable viral load in patients treated with potent antiretrovirals, current therapy is unable to purge the virus from these latent reservoirs. In order to broaden the inhibitory range and effectiveness of current antiretrovirals, the potential of bryostatin was investigated as an HIV inhibitor and latent activator. Bryostatin revealed antiviral activity against R5- and X4-tropic viruses in receptor independent and partly via transient decrease in CD4/CXCR4 expression. Further, bryostatin at low nanomolar concentrations robustly reactivated latent viral infection in monocytic and lymphocytic cells via activation of Protein Kinase C (PKC) -α and -Ύ, because PKC inhibitors rottlerin and GF109203X abrogated the bryostatin effect. Bryostatin specifically modulated novel PKC (nPKC) involving stress induced AMP Kinase (AMPK) inasmuch as an inhibitor of AMPK, compound C partially ablated the viral reactivation effect. Above all, bryostatin was non-toxic in vitro and was unable to provoke T-cell activation. The dual role of bryostatin on HIV life cycle may be a beneficial adjunct to the treatment of HIV especially by purging latent virus from different cellular reservoirs such as brain and lymphoid organs

    In vitro nuclear interactome of the HIV-1 Tat protein

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One facet of the complexity underlying the biology of HIV-1 resides not only in its limited number of viral proteins, but in the extensive repertoire of cellular proteins they interact with and their higher-order assembly. HIV-1 encodes the regulatory protein Tat (86–101aa), which is essential for HIV-1 replication and primarily orchestrates HIV-1 provirus transcriptional regulation. Previous studies have demonstrated that Tat function is highly dependent on specific interactions with a range of cellular proteins. However they can only partially account for the intricate molecular mechanisms underlying the dynamics of proviral gene expression. To obtain a comprehensive nuclear interaction map of Tat in T-cells, we have designed a proteomic strategy based on affinity chromatography coupled with mass spectrometry.</p> <p>Results</p> <p>Our approach resulted in the identification of a total of 183 candidates as Tat nuclear partners, 90% of which have not been previously characterised. Subsequently we applied <it>in silico </it>analysis, to validate and characterise our dataset which revealed that the Tat nuclear interactome exhibits unique signature(s). First, motif composition analysis highlighted that our dataset is enriched for domains mediating protein, RNA and DNA interactions, and helicase and ATPase activities. Secondly, functional classification and network reconstruction clearly depicted Tat as a polyvalent protein adaptor and positioned Tat at the nexus of a densely interconnected interaction network involved in a range of biological processes which included gene expression regulation, RNA biogenesis, chromatin structure, chromosome organisation, DNA replication and nuclear architecture.</p> <p>Conclusion</p> <p>We have completed the <it>in vitro </it>Tat nuclear interactome and have highlighted its modular network properties and particularly those involved in the coordination of gene expression by Tat. Ultimately, the highly specialised set of molecular interactions identified will provide a framework to further advance our understanding of the mechanisms of HIV-1 proviral gene silencing and activation.</p

    HIV interactions with monocytes and dendritic cells: viral latency and reservoirs

    Get PDF
    HIV is a devastating human pathogen that causes serious immunological diseases in humans around the world. The virus is able to remain latent in an infected host for many years, allowing for the long-term survival of the virus and inevitably prolonging the infection process. The location and mechanisms of HIV latency are under investigation and remain important topics in the study of viral pathogenesis. Given that HIV is a blood-borne pathogen, a number of cell types have been proposed to be the sites of latency, including resting memory CD4+ T cells, peripheral blood monocytes, dendritic cells and macrophages in the lymph nodes, and haematopoietic stem cells in the bone marrow. This review updates the latest advances in the study of HIV interactions with monocytes and dendritic cells, and highlights the potential role of these cells as viral reservoirs and the effects of the HIV-host-cell interactions on viral pathogenesis

    Genetic determinants of telomere length from 109,122 ancestrally diverse whole-genome sequences in TOPMed

    Get PDF
    Genetic studies on telomere length are important for understanding age-related diseases. Prior GWASs for leukocyte TL have been limited to European and Asian populations. Here, we report the first sequencing-based association study for TL across ancestrally diverse individuals (European, African, Asian, and Hispanic/Latino) from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program. We used whole-genome sequencing (WGS) of whole blood for variant genotype calling and the bioinformatic estimation of telomere length in n = 109,122 individuals. We identified 59 sentinel variants (p &lt; 5 × 10−9) in 36 loci associated with telomere length, including 20 newly associated loci (13 were replicated in external datasets). There was little evidence of effect size heterogeneity across populations. Fine-mapping at OBFC1 indicated that the independent signals colocalized with cell-type-specific eQTLs for OBFC1 (STN1). Using a multi-variant gene-based approach, we identified two genes newly implicated in telomere length, DCLRE1B (SNM1B) and PARN. In PheWAS, we demonstrated that our TL polygenic trait scores (PTSs) were associated with an increased risk of cancer-related phenotypes

    The first Russian experience in successfully using an implantable ĐĄardioWest TAH-t artificial heart system (SynCardia)

    Get PDF
    The paper describes the first Russian experience in using an implantable CardioWest TAH-t artificial heart (AH) system (SynCardia, USA) to treat critical heart failure. The AH system was implanted in a 60-year-old female patient with dilated cardiomyopathy, a limited probability of survival, and unoperated defects. The main medical and technical characteristics of the AH system and the patient’s clinical status in the preoperative and immediate and late (up to 238 days) postoperative periods are presented. Indications for and contraindication to implantation of the system and its possible application modes are considered. Equipment and a procedure for AH implantation, approaches to postoperative management, and treatment policy for postoperative complications are described in detail. The application of the AH system permitted the patient to wait for a donor heart. The latter was successfully transplanted in the patient

    Altered cytokine profiles in patients with Chuvash polycythemia

    No full text
    Chuvash polycythemia results from a homozygous 598C\u3eT mutation in exon 3 of the von Hippel-Lindau (VHL) gene. This disrupts the normoxia pathway for degrading hypoxia inducible factor (HIF)-1α and HIF-2α causing altered expression of HIF-1 and HIF-2 inducible genes. As hypoxia induces expression of proinflammatory cytokines, we hypothesized that there might be an elevation of Th1 cytokines in the setting of Chuvash polycythemia. We analyzed plasma concentrations of Th1 (interleukins-2 and 12, interferon-γ, granulocyte-monocyte colony-stimulating factor, tumor necrosis factor-α) and Th2 cytokines (interleukins-4, 5, 10, and 13) using the Bio-Plex multiplex suspension array system in 34 VHL598C\u3eT homozygotes and 32 VHL wild-type participants from Chuvashia. Concentrations of all the Th1 and Th2 cytokines measured were elevated in the VHL598C\u3eT homozygotes compared with the control wild-type participants, but the ratios of Th1 to Th2 cytokines did not differ by genotype. In parallel, peripheral blood concentrations of CD4 positive T-helper cells and CD4/CD8 ratio were lower in the VHL598C\u3eT homozygotes. In conclusion, the up-regulated hypoxic response in Chuvash polycythemia is associated with increased plasma products of both the Th1 and Th2 pathways, but the balance between the two pathways seems to be preserved. Am. J. Hematol. © 2008 Wiley-Liss, Inc
    corecore