34 research outputs found

    Assessing the fractions of tautomeric forms of the imidazole ring of histidine in proteins as a function of pH

    Get PDF
    A method is proposed to determine the fraction of the tautomeric forms of the imidazole ring of histidine in proteins as a function of pH, provided that the observed and chemical shifts and the protein structure, or the fraction of H+ form, are known. This method is based on the use of quantum chemical methods to compute the 13C NMR shieldings of all the imidazole ring carbons (13Cγ, , and ) for each of the two tautomers, Nδ1-H and Nϵ2-H, and the protonated form, H+, of histidine. This methodology enabled us (i) to determine the fraction of all the tautomeric forms of histidine for eight proteins for which the and chemical shifts had been determined in solution in the pH range of 3.2 to 7.5 and (ii) to estimate the fraction of tautomeric forms of eight histidine-containing dipeptide crystals for which the chemical shifts had been determined by solid-state 13C NMR. Our results for proteins indicate that the protonated form is the most populated one, whereas the distribution of the tautomeric forms for the imidazole ring varies significantly among different histidines in the same protein, reflecting the importance of the environment of the histidines in determining the tautomeric forms. In addition, for ∼70% of the neutral histidine-containing dipeptides, the method leads to fairly good agreement between the calculated and the experimental tautomeric form. Coexistence of different tautomeric forms in the same crystal structure may explain the remaining 30% of disagreement

    Use of 13Cα chemical shifts for accurate determination of β-sheet structures in solution

    No full text
    A physics-based method, aimed at determining protein structures by using NOE-derived distance constraints together with observed and computed 13Cα chemical shifts, is applied to determine the structure of a 20-residue all-β peptide (BS2). The approach makes use of 13Cα chemical shifts, computed at the density functional level of theory, to derive backbone and side-chain torsional constraints for all of the amino acid residues, without making use of information about residue occupancy in any region of the Ramachandran map. In addition, the torsional constraints are derived dynamically—i.e., they are redefined at each step of the algorithm. It is shown that, starting from randomly generated conformations, the final protein models are more accurate than existing NMR-derived models of the peptide, in terms of the agreement between predicted and observed 13Cβ chemical shifts, and some stereochemical quality indicators. The accumulated evidence indicates that, for a highly flexible BS2 peptide in solution, it may not be possible to determine a single structure (or a small set of structures) that would satisfy all of the constraints exactly and simultaneously because the observed NOEs and 13Cα chemical shifts correspond to a dynamic ensemble of conformations. Analysis of the structural flexibility, carried out by molecular dynamics simulations in explicit water, revealed that the whole peptide can be characterized as having liquid-like behavior, according to the Lindemann criterion. In summary, a β-sheet structure of a highly flexible peptide in solution can be determined by a quantum-chemical-based procedure

    Further Evidence for the Likely Completeness of the Library of Solved Single Domain Protein Structures

    No full text
    Recent studies questioned whether the PDB contains all compact, single domain protein structures. Here, we show that all quasi-spherical, QS, random protein structures devoid of secondary structure are in the PDB and are excellent templates for all native PDB proteins up to 250 residues. Because QS templates have similar global contour as native, TASSER can refine 98% (90%) of those whose TM-score is 0.4 (0.35) to structures ≥ the 0.5 TM-score threshold (0.74 (0.64) mean TM-score) for CATH/SCOP assignment. Based on this and the fact that at a TM-score of 0.4, 83% (90%) of all (internal) core secondary structure elements are recovered, a 0.40 TM-score is an appropriate fold similarity assignment threshold. Despite claims of Taylor, Trovato and Zhou that many of their structures lack a PDB counterpart, using fr-TM-align, at a 0.45 (0.5) TM-score threshold, essentially all (most) are found in the PDB. Thus, the conclusion that the PDB is likely complete is further supported

    Physics-based protein-structure prediction using a hierarchical protocol based on the UNRES force field: Assessment in two blind tests

    No full text
    Recent improvements in the protein-structure prediction method developed in our laboratory, based on the thermodynamic hypothesis, are described. The conformational space is searched extensively at the united-residue level by using our physics-based UNRES energy function and the conformational space annealing method of global optimization. The lowest-energy coarse-grained structures are then converted to an all-atom representation and energy-minimized with the ECEPP/3 force field. The procedure was assessed in two recent blind tests of protein-structure prediction. During the first blind test, we predicted large fragments of α and α+β proteins [60–70 residues with C(α) rms deviation (rmsd) <6 Å]. However, for α+β proteins, significant topological errors occurred despite low rmsd values. In the second exercise, we predicted whole structures of five proteins (two α and three α+β, with sizes of 53–235 residues) with remarkably good accuracy. In particular, for the genomic target TM0487 (a 102-residue α+β protein from Thermotoga maritima), we predicted the complete, topologically correct structure with 7.3-Å C(α) rmsd. So far this protein is the largest α+β protein predicted based solely on the amino acid sequence and a physics-based potential-energy function and search procedure. For target T0198, a phosphate transport system regulator PhoU from T. maritima (a 235-residue mainly α-helical protein), we predicted the topology of the whole six-helix bundle correctly within 8 Å rmsd, except the 32 C-terminal residues, most of which form a β-hairpin. These and other examples described in this work demonstrate significant progress in physics-based protein-structure prediction

    Recent improvements in prediction of protein structure by global optimization of a potential energy function

    No full text
    Recent improvements of a hierarchical ab initio or de novo approach for predicting both α and β structures of proteins are described. The united-residue energy function used in this procedure includes multibody interactions from a cumulant expansion of the free energy of polypeptide chains, with their relative weights determined by Z-score optimization. The critical initial stage of the hierarchical procedure involves a search of conformational space by the conformational space annealing (CSA) method, followed by optimization of an all-atom model. The procedure was assessed in a recent blind test of protein structure prediction (CASP4). The resulting lowest-energy structures of the target proteins (ranging in size from 70 to 244 residues) agreed with the experimental structures in many respects. The entire experimental structure of a cyclic α-helical protein of 70 residues was predicted to within 4.3 Å α-carbon (C(α)) rms deviation (rmsd) whereas, for other α-helical proteins, fragments of roughly 60 residues were predicted to within 6.0 Å C(α) rmsd. Whereas β structures can now be predicted with the new procedure, the success rate for α/β- and β-proteins is lower than that for α-proteins at present. For the β portions of α/β structures, the C(α) rmsd's are less than 6.0 Å for contiguous fragments of 30–40 residues; for one target, three fragments (of length 10, 23, and 28 residues, respectively) formed a compact part of the tertiary structure with a C(α) rmsd less than 6.0 Å. Overall, these results constitute an important step toward the ab initio prediction of protein structure solely from the amino acid sequence
    corecore