7,610 research outputs found
BRST invariant formulation of spontaneously broken gauge theory in generalized differential geometry
Noncommutative geometry(NCG) on the discrete space successfully reproduces
the Higgs mechanism of the spontaneously broken gauge theory, in which the
Higgs boson field is regarded as a kind of gauge field on the discrete space.
We could construct the generalized differential geometry(GDG) on the discrete
space which is very close to NCG in case of .
GDG is a direct generalization of the differential geometry on the ordinary
manifold into the discrete one. In this paper, we attempt to construct the BRST
invariant formulation of spontaneously broken gauge theory based on GDG and
obtain the BRST invariant Lagrangian with the t'Hooft-Feynman gauge fixing
term.Comment: 15 page
Microcomputer system for medium-sized and experimental finite element analysis
The development of a microcomputer system is described. A series of finite element analysis programs are evaluated in terms of their cost effective application within the microcomputer system. It is shown that the system is practically maintenance free and can be sustained by individual laboratories of standard scale in the educational or academic environment
Modified Reconstruction of Standard Model in Non-Commutative Differential Geometry
Sogami recently proposed the new idea to express Higgs particle as a kind of
gauge particle by prescribing the generalized covariant derivative with gauge
and Higgs fields operating on quark and lepton fields. The field strengths for
both the gauge and Higgs fields are defined by the commutators of the covariant
derivative by which he could obtain the Yang-Mills Higgs Lagrangian in the
standard model. Inspired by Sogami's work, we present a modification of our
previous scheme to formulate the spontaneously broken gauge theory in
non-commutative geometry on the discrete space; Minkowski space multiplied by
two points space by introducing the generation mixing matrix in operation of
the generalized derivative on the more fundamental fields a_i(x,y) which
compose the gauge and Higgs fields. The standard model is reconstructed
according to the modified scheme, which does not yields not only any special
relations between the particle masses but also the special restriction on the
Higgs potential.Comment: 21 page
The vibrational predissociation spectroscopy of hydrogen cluster ions
The first infrared spectra of protonated hydrogen clusters in the gas phase have been observed. Predissociation spectra were taken with a tandem mass spectrometer: mass selected hydrogen cluster ions were irradiated inside a rf ion trap by a tunable infrared laser, and the fragment ions created by photodissociation of the clusters were mass selected and detected. Spectra for each product channel were measured by counting fragment ions as a function of laser frequency. Low resolution spectra (Deltanu=10 cm^−1) in the region from 3800 to 4200 cm^−1 were observed for the ions H + 5, H + 7, and H + 9 at 3910, 3980, and 4020 cm−1, respectively. A band was also observed for H + 5 at 3532 cm^−1. No rotational structure was resolved. The frequencies of the band maxima agree well with the frequencies predicted by previous ab initio calculations for the highest modes
BRST invariant Lagrangian of spontaneously broken gauge theories in noncommutative geometry
The quantization of spontaneously broken gauge theories in noncommutative
geometry(NCG) has been sought for some time, because quantization is crucial
for making the NCG approach a reliable and physically acceptable theory. Lee,
Hwang and Ne'eman recently succeeded in realizing the BRST quantization of
gauge theories in NCG in the matrix derivative approach proposed by Coquereaux
et al. The present author has proposed a characteristic formulation to
reconstruct a gauge theory in NCG on the discrete space .
Since this formulation is a generalization of the differential geometry on the
ordinary manifold to that on the discrete manifold, it is more familiar than
other approaches. In this paper, we show that within our formulation we can
obtain the BRST invariant Lagrangian in the same way as Lee, Hwang and Ne'eman
and apply it to the SU(2)U(1) gauge theory.Comment: RevTeX, page
- …