956 research outputs found

    Five types of blow-up in a semilinear fourth-order reaction-diffusion equation: an analytic-numerical approach

    Full text link
    Five types of blow-up patterns that can occur for the 4th-order semilinear parabolic equation of reaction-diffusion type u_t= -\Delta^2 u + |u|^{p-1} u \quad {in} \quad \ren \times (0,T), p>1, \quad \lim_{t \to T^-}\sup_{x \in \ren} |u(x,t)|= +\iy, are discussed. For the semilinear heat equation ut=Δu+upu_t= \Delta u+ u^p, various blow-up patterns were under scrutiny since 1980s, while the case of higher-order diffusion was studied much less, regardless a wide range of its application.Comment: 41 pages, 27 figure

    Ill-posedness of degenerate dispersive equations

    Full text link
    In this article we provide numerical and analytical evidence that some degenerate dispersive partial differential equations are ill-posed. Specifically we study the K(2,2) equation ut=(u2)xxx+(u2)xu_t = (u^2)_{xxx} + (u^2)_{x} and the "degenerate Airy" equation ut=2uuxxxu_t = 2 u u_{xxx}. For K(2,2) our results are computational in nature: we conduct a series of numerical simulations which demonstrate that data which is very small in H2H^2 can be of unit size at a fixed time which is independent of the data's size. For the degenerate Airy equation, our results are fully rigorous: we prove the existence of a compactly supported self-similar solution which, when combined with certain scaling invariances, implies ill-posedness (also in H2H^2)

    A particle system with explosions: law of large numbers for the density of particles and the blow-up time

    Get PDF
    Consider a system of independent random walks in the discrete torus with creation-annihilation of particles and possible explosion of the total number of particles in finite time. Rescaling space and rates for diffusion/creation/annihilation of particles, we obtain a stong law of large numbers for the density of particles in the supremum norm. The limiting object is a classical solution to the semilinear heat equation u_t =u_{xx} + f(u). If f(u)=u^p, 1<p \le 3, we also obtain a law of large numbers for the explosion time

    New variable separation approach: application to nonlinear diffusion equations

    Full text link
    The concept of the derivative-dependent functional separable solution, as a generalization to the functional separable solution, is proposed. As an application, it is used to discuss the generalized nonlinear diffusion equations based on the generalized conditional symmetry approach. As a consequence, a complete list of canonical forms for such equations which admit the derivative-dependent functional separable solutions is obtained and some exact solutions to the resulting equations are described.Comment: 19 pages, 2 fig

    Interaction effects on magnetooscillations in a two-dimensional electron gas

    Full text link
    Motivated by recent experiments, we study the interaction corrections to the damping of magnetooscillations in a two-dimensional electron gas (2DEG). We identify leading contributions to the interaction-induced damping which are induced by corrections to the effective mass and quantum scattering time. The damping factor is calculated for Coulomb and short-range interaction in the whole range of temperatures, from the ballistic to the diffusive regime. It is shown that the dominant effect is that of the renormalization of the effective electron mass due to the interplay of the interaction and impurity scattering. The results are relevant to the analysis of experiments on magnetooscillations (in particular, for extracting the value of the effective mass) and are expected to be useful for understanding the physics of a high-mobility 2DEG near the apparent metal-insulator transition.Comment: 24 pages; subsection adde

    Overscreening Diamagnetism in Cylindrical Superconductor-Normal Metal-Heterostructures

    Full text link
    We study the linear diamagnetic response of a superconducting cylinder coated by a normal-metal layer due to the proximity effect using the clean limit quasiclassical Eilenberger equations. We compare the results for the susceptibility with those for a planar geometry. Interestingly, for RdR\sim d the cylinder exhibits a stronger overscreening of the magnetic field, i.e., at the interface to the superconductor it can be less than (-1/2) of the applied field. Even for RdR\gg d, the diamagnetism can be increased as compared to the planar case, viz. the magnetic susceptibility 4πχ4\pi\chi becomes smaller than -3/4. This behaviour can be explained by an intriguing spatial oscillation of the magnetic field in the normal layer

    Electron transport through interacting quantum dots

    Full text link
    We present a detailed theoretical investigation of the effect of Coulomb interactions on electron transport through quantum dots and double barrier structures connected to a voltage source via an arbitrary linear impedance. Combining real time path integral techniques with the scattering matrix approach we derive the effective action and evaluate the current-voltage characteristics of quantum dots at sufficiently large conductances. Our analysis reveals a reach variety of different regimes which we specify in details for the case of chaotic quantum dots. At sufficiently low energies the interaction correction to the current depends logarithmically on temperature and voltage. We identify two different logarithmic regimes with the crossover between them occurring at energies of order of the inverse dwell time of electrons in the dot. We also analyze the frequency-dependent shot noise in chaotic quantum dots and elucidate its direct relation to interaction effects in mesoscopic electron transport.Comment: 21 pages, 4 figures. References added, discussion slightly extende
    corecore