2,080 research outputs found
Simulation of the CMS Resistive Plate Chambers
The Resistive Plate Chamber (RPC) muon subsystem contributes significantly to
the formation of the trigger decision and reconstruction of the muon trajectory
parameters. Simulation of the RPC response is a crucial part of the entire CMS
Monte Carlo software and directly influences the final physical results. An
algorithm based on the parametrization of RPC efficiency, noise, cluster size
and timing for every strip has been developed. Experimental data obtained from
cosmic and proton-proton collisions at TeV have been used for
determination of the parameters. A dedicated validation procedure has been
developed. A good agreement between the simulated and experimental data has
been achieved.Comment: to be published in JINS
The Upgrade of the CMS RPC System during the First LHC Long Shutdown
The CMS muon system includes in both the barrel and endcap region Resistive
Plate Chambers (RPC). They mainly serve as trigger detectors and also improve
the reconstruction of muon parameters. Over the years, the instantaneous
luminosity of the Large Hadron Collider gradually increases. During the LHC
Phase 1 (~first 10 years of operation) an ultimate luminosity is expected above
its design value of 10^34/cm^2/s at 14 TeV. To prepare the machine and also the
experiments for this, two long shutdown periods are scheduled for 2013-2014 and
2018-2019. The CMS Collaboration is planning several detector upgrades during
these long shutdowns. In particular, the muon detection system should be able
to maintain a low-pT threshold for an efficient Level-1 Muon Trigger at high
particle rates. One of the measures to ensure this, is to extend the present
RPC system with the addition of a 4th layer in both endcap regions. During the
first long shutdown, these two new stations will be equipped in the region
|eta|<1.6 with 144 High Pressure Laminate (HPL) double-gap RPCs operating in
avalanche mode, with a similar design as the existing CMS endcap chambers.
Here, we present the upgrade plans for the CMS RPC system for the fist long
shutdown, including trigger simulation studies for the extended system, and
details on the new HPL production, the chamber assembly and the quality control
procedures.Comment: 9 pages, 6 figures, presented by M.Tytgat at the XI workshop on
Resistive Plate Chambers and Related Detectors (RPC2012), INFN - Laboratori
Nazionali di Frascati, February 5-10, 201
High rate, fast timing Glass RPC for the high {\eta} CMS muon detectors
The HL-LHC phase is designed to increase by an order of magnitude the amount
of data to be collected by the LHC experiments. To achieve this goal in a
reasonable time scale the instantaneous luminosity would also increase by an
order of magnitude up to . The region of the forward
muon spectrometer () is not equipped with RPC stations. The
increase of the expected particles rate up to (including a
safety factor 3) motivates the installation of RPC chambers to guarantee
redundancy with the CSC chambers already present. The actual RPC technology of
CMS cannot sustain the expected background level. The new technology that will
be chosen should have a high rate capability and provides a good spatial and
timing resolution. A new generation of Glass-RPC (GRPC) using low-resistivity
(LR) glass is proposed to equip at least the two most far away of the four high
muon stations of CMS. First the design of small size prototypes and
studies of their performance in high-rate particles flux is presented. Then the
proposed designs for large size chambers and their fast-timing electronic
readout are examined and preliminary results are provided.Comment: 14 pages, 11 figures, Conference proceeding for the 2016 Resistive
Plate Chambers and Related Detector
Performance of a Large-Area GEM Detector Prototype for the Upgrade of the CMS Muon Endcap System
Gas Electron Multiplier (GEM) technology is being considered for the forward
muon upgrade of the CMS experiment in Phase 2 of the CERN LHC. Its first
implementation is planned for the GE1/1 system in the region of the muon endcap mainly to control muon level-1 trigger rates
after the second long LHC shutdown. A GE1/1 triple-GEM detector is read out by
3,072 radial strips with 455 rad pitch arranged in eight -sectors.
We assembled a full-size GE1/1 prototype of 1m length at Florida Tech and
tested it in 20-120 GeV hadron beams at Fermilab using Ar/CO 70:30 and
the RD51 scalable readout system. Four small GEM detectors with 2-D readout and
an average measured azimuthal resolution of 36 rad provided precise
reference tracks. Construction of this largest GEM detector built to-date is
described. Strip cluster parameters, detection efficiency, and spatial
resolution are studied with position and high voltage scans. The plateau
detection efficiency is [97.1 0.2 (stat)]\%. The azimuthal resolution is
found to be [123.5 1.6 (stat)] rad when operating in the center of
the efficiency plateau and using full pulse height information. The resolution
can be slightly improved by 10 rad when correcting for the bias due
to discrete readout strips. The CMS upgrade design calls for readout
electronics with binary hit output. When strip clusters are formed
correspondingly without charge-weighting and with fixed hit thresholds, a
position resolution of [136.8 2.5 stat] rad is measured, consistent
with the expected resolution of strip-pitch/ = 131.3 rad. Other
-sectors of the detector show similar response and performance.Comment: 8 pages, 32 figures, submitted to Proc. 2014 IEEE Nucl. Sci.
Symposium, Seattle, WA, reference adde
Web-based monitoring tools for Resistive Plate Chambers in the CMS experiment at CERN
The Resistive Plate Chambers (RPC) are used in the CMS experiment at the trigger level and also in the standard offline muon reconstruction. In order to guarantee the quality of the data collected and to monitor online the detector performance, a set of tools has been developed in CMS which is heavily used in the RPC system. The Web-based monitoring (WBM) is a set of java servlets that allows users to check the performance of the hardware during data taking, providing distributions and history plots of all the parameters. The functionalities of the RPC WBM monitoring tools are presented along with studies of the detector performance as a function of growing luminosity and environmental conditions that are tracked over time
Radiation background with the CMS RPCs at the LHC
The Resistive Plate Chambers (RPCs) are employed in the CMS Experiment at the LHC as dedicated trigger system both in the barrel and in the endcap. This article presents results of the radiation background measurements performed with the 2011 and 2012 proton-proton collision data collected by CMS. Emphasis is given to the measurements of the background distribution inside the RPCs. The expected background rates during the future running of the LHC are estimated both from extrapolated measurements and from simulation
Quality control and beam test of GEM detectors for future upgrades of the CMS muon high rate region at the LHC
Gas Electron Multipliers (GEM) are a proven position sensitive gas detector technology which nowadays is becoming more widely used in High Energy Physics. GEMs offer an excellent spatial resolution and a high particle rate capability, with a close to 100% detection efficiency. In view of the high luminosity phase of the CERN Large Hadron Collider, these aforementioned features make GEMs suitable candidates for the future upgrades of the Compact Muon Solenoid (CMS) detector. In particular, the CMS GEM Collaboration proposes to cover the high-eta region of the muon system with large-area triple-GEM detectors, which have the ability to provide robust and redundant tracking and triggering functions. In this contribution, after a general introduction and overview of the project, the construction of full-size trapezoidal triple-GEM prototypes will be described in more detail. The procedures for the quality control of the GEM foils, including gain uniformity measurements with an x-ray source will be presented. In the past few years, several CMS triple-GEM prototype detectors were operated with test beams at the CERN SPS. The results of these test beam campaigns will be summarised
Overview of large area triple-GEM detectors for the CMS forward muon upgrade
In order to cope with the harsh environment expected from the high luminosity LHC, the CMS forward muon system requires an upgrade. The two main challenges expected in this environment are an increase in the trigger rate and increased background radiation leading to a potential degradation of the particle ID performance. Additionally, upgrades to other subdetectors of CMS allow for extended coverage for particle tracking, and adding muon system coverage to this region will further enhance the performance of CMS
A novel application of Fiber Bragg Grating (FBG) sensors in MPGD
We present a novel application of Fiber Bragg Grating (FBG) sensors in the
construction and characterisation of Micro Pattern Gaseous Detector (MPGD),
with particular attention to the realisation of the largest triple (Gas
electron Multiplier) GEM chambers so far operated, the GE1/1 chambers of the
CMS experiment at LHC. The GE1/1 CMS project consists of 144 GEM chambers of
about 0.5 m2 active area each, employing three GEM foils per chamber, to be
installed in the forward region of the CMS endcap during the long shutdown of
LHC in 2108-2019. The large active area of each GE1/1 chamber consists of GEM
foils that are mechanically stretched in order to secure their flatness and the
consequent uniform performance of the GE1/1 chamber across its whole active
surface. So far FBGs have been used in high energy physics mainly as high
precision positioning and re-positioning sensors and as low cost, easy to
mount, low space consuming temperature sensors. FBGs are also commonly used for
very precise strain measurements in material studies. In this work we present a
novel use of FBGs as flatness and mechanical tensioning sensors applied to the
wide GEM foils of the GE1/1 chambers. A network of FBG sensors have been used
to determine the optimal mechanical tension applied and to characterise the
mechanical tension that should be applied to the foils. We discuss the results
of the test done on a full-sized GE1/1 final prototype, the studies done to
fully characterise the GEM material, how this information was used to define a
standard assembly procedure and possible future developments.Comment: 4 pages, 4 figures, presented by Luigi Benussi at MPGD 2015 (Trieste,
Italy). arXiv admin note: text overlap with arXiv:1512.0848
- …