31,010 research outputs found
A two component jet model for the X-ray afterglow flat segment in short GRB 051221A
In the double neutron star merger or neutron star-black hole merger model for
short GRBs, the outflow launched might be mildly magnetized and neutron rich.
The magnetized neutron-rich outflow will be accelerated by the magnetic and
thermal pressure and may form a two component jet finally, as suggested by
Vlahakis, Peng & K\"{o}nigl (2003). We show in this work that such a two
component jet model could well reproduce the multi-wavelength afterglow
lightcurves, in particular the X-ray flat segment, of short GRB 051221A. In
this model, the central engine need not to be active much longer than the
prompt ray emission.Comment: 11 pages, 2 figure; Accepted for publication by ApJ
Early photon-shock interaction in stellar wind: sub-GeV photon flash and high energy neutrino emission from long GRBs
For gamma-ray bursts (GRBs) born in a stellar wind, as the reverse shock
crosses the ejecta, usually the shocked regions are still precipitated by the
prompt MeV \gamma-ray emission. Because of the tight overlapping of the MeV
photon flow with the shocked regions, the optical depth for the GeV photons
produced in the shocks is very large. These high energy photons are absorbed by
the MeV photon flow and generate relativistic e^\pm pairs. These pairs
re-scatter the soft X-ray photons from the forward shock as well as the prompt
\gamma-ray photons and power detectable high energy emission, significant part
of which is in the sub-GeV energy range. Since the total energy contained in
the forward shock region and the reverse shock region are comparable, the
predicted sub-GeV emission is independent on whether the GRB ejecta are
magnetized (in which case the reverse shock IC and synchrotron self-Compton
emission is suppressed). As a result, a sub-GeV flash is a generic signature
for the GRB wind model, and it should be typically detectable by the future
{\em Gamma-Ray Large Area Telescope} (GLAST). Overlapping also influence
neutrino emission. Besides the 10^{15} \sim 10^{17} eV neutrino emission
powered by the interaction of the shock accelerated protons with the
synchrotron photons in both the forward and reverse shock regions, there comes
another eV neutrino emission component powered by protons interacting
with the MeV photon flow. This last component has a similar spectrum to the one
generated in the internal shock phase, but the typical energy is slightly
lower.Comment: 7 pages, accepted for publication in Ap
A Reverse-Shock Model for the Early Afterglow of GRB 050525A
The prompt localization of gamma-ray burst (GRB) 050525A by {\em Swift}
allowed the rapid follow-up of the afterglow. The observations revealed that
the optical afterglow had a major rebrightening starting at days
and ending at days, which was followed by an initial power-law
decay. Here we show that this early emission feature can be interpreted as the
reverse shock emission superposed by the forward shock emission in an
interstellar medium environment. By fitting the observed data, we further
constrain some parameters of the standard fireball-shock model: the initial
Lorentz factor of the ejecta , the magnetic energy fraction
, and the medium density . These
limits are consistent with those from the other very-early optical afterglows
observed so far. In principle, a wind environment for GRB 050525A is
disfavored.Comment: 11 pages, 1 figure, accepted for publication in Ap
Melt conditioned direct chill casting (MC-DC) of wrought Al-alloys
Melt Conditioned Direct Chill (MC-DC) casting is a new development for producing high-quality billets and slabs. In the MC-DC process, liquid metal is continuously fed into a MCAST (melt conditioning by advanced shear technology) machine, where the liquid metal is subjected to high shear rate and high degree of turbulence provided by a twin screw mechanism at temperatures either above or below the alloy liquidus, and the conditioned liquid metal is then fed continuously into a Direct Chill (DC) caster to produce billets or slabs. The MC-DC process is applicable to both Aland Mg-alloys. In this paper we present our experimental investigations of the effects of processing parameters on the microstructural and compositional uniformity of 5xxx and 7xxx series Al-alloys. It has been confirmed by our experiments that the MC-DC process can produce billets and slabs with fine and uniform microstructure, uniform chemical compositions and much reduced cast defects, such as porosity and cracks
Rheo-diecasting AZ91D magnesium alloy
Magnesium recycling has become more important in todayâs environmentally aware society. To prompt the usage of recycled magnesium scrap and further improve casting structure and properties, a novel physical approach, the rheo-diecasting process (RDC), has been applied in the present study to deal with AZ91D Mg-alloy directly from die-casting scrap. The experimental results show that the RDC process can be used to produce recycled AZ91D alloy with fine and uniform microstructure and a very low level of porosity. The intermetallic compounds containing the impurity elements were of fine and of spherical morphology, distributed uniformly in the alloy matrix. No oxide particle clusters or oxide films were found in the RDC microstructure. The tensile properties of the recycled AZ91D alloy were comparable to those produced by RDC from the primary alloy ingots., and much better than those produced by conventional High Pressure Die Casting (HPDC)
Strong GeV Emission Accompanying TeV Blazar H1426+428
For High frequency BL Lac objects (HBLs) like H1426+428, a significant
fraction of their TeV gamma-rays emitted are likely to be absorbed in
interactions with the diffuse IR background, yielding pairs. The
resulting pairs generate one hitherto undiscovered GeV emission by
inverse Compton scattering with the cosmic microwave background photons
(CMBPs). We study such emission by taking the 1998-2000 CAT data, the
reanalyzed 1999 & 2000 HEGRA data and the corresponding intrinsic spectra
proposed by Aharonian et al. (2003a). We numerically calculate the scattered
photon spectra for different intergalactic magnetic field (IGMF) strengths. If
the IGMF is about or weaker, there comes very strong GeV
emission, whose flux is far above the detection sensitivity of the upcoming
satellite GLAST! Considered its relatively high redshift (), the
detected GeV emission in turn provides us a valuable chance to calibrate the
poor known spectral energy distribution of the intergalactic infrared
background, or provides us some reliable constraints on the poorly known IGMF
strength.Comment: 5 pages, 1 figure. A&A in Pres
Effects of the complex mass distribution of dark matter halos on weak lensing cluster surveys
Gravitational lensing effects arise from the light ray deflection by all of
the mass distribution along the line of sight. It is then expected that weak
lensing cluster surveys can provide us true mass-selected cluster samples. With
numerical simulations, we analyze the correspondence between peaks in the
lensing convergence -map and dark matter halos. Particularly we
emphasize the difference between the peak value expected from a dark
matter halo modeled as an isolated and spherical one, which exhibits a
one-to-one correspondence with the halo mass at a given redshift, and that of
the associated -peak from simulations. For halos with the same expected
, their corresponding peak signals in the -map present a wide
dispersion. At an angular smoothing scale of , our
study shows that for relatively large clusters, the complex mass distribution
of individual clusters is the main reason for the dispersion. The projection
effect of uncorrelated structures does not play significant roles. The
triaxiality of dark matter halos accounts for a large part of the dispersion,
especially for the tail at high side. Thus lensing-selected clusters
are not really mass-selected. (abridged)Comment: ApJ accepte
The optical flare and afterglow light curve of GRB 050904 at redshift z=6.29
GRB050904 is very interesting since it is by far the most distant GRB event
known to date(). It was reported that during the prompt high energy
emission phase, a very bright optical flare was detected, and it was temporal
coincident with an X-ray flare. Here we use two models to explain the optical
flare, One is the "late internal shock model", in which the optical flare is
produced by the synchrotron radiation of the electrons accelerated by the late
internal shock, and the X-ray flare is produced by the synchrotron-self-Compton
mechanism. The other is the external forward-reverse shock model, in which the
optical flare is from the reverse shock emission and the X-ray flare is
attributed to the central engine activity. We show that with proper parameters,
a bright optical flare can appear in both models. We think the "late internal
shock model" is more favored since in this model the optical flash and the
X-ray flare have the same origin, which provides a natural explanation of the
temporal coincidence of them. In the forward-reverse shock scenario, fits to
the optical flare and the late afterglow suggests that the physical parameters
of the reverse shock are much different from that of forward shock, as found in
modeling the optical flash of GRB 990123 previously.Comment: 11 pages, 1 figure, accepted for publication in ApJ
Grain refinement of DC cast magnesium alloys with intensive melt shearing
A new direct chill (DC) casting process, melt conditioned DC (MC-DC) process, has been developed for the production of high quality billets/slabs of light alloys by application of intensive melt shearing through a rotor-stator high shear device during the DC casting process. The rotor-stator high shear device provides intensive melt shearing to disperse the naturally occurring oxide films, and other inclusions, while creating a microscopic flow pattern to homogenize the temperature and composition fields in the sump. In this paper, we report the grain refining effect of intensive melt shearing in the MC-DC casting processing. Experimental results on DC casting of Mg-alloys with and without intensive melt shearing have demonstrated that the MC-DC casting process can produce magnesium alloy billets with significantly refined microstructure. Such grain refinement in the MC-DC casting process can be attributed to enhanced heterogeneous nucleation by dispersed naturally occurring oxide particles, increased nuclei survival rate in uniform temperature and compositional fields in the sump, and potential contribution from dendrite arm fragmentation
- âŠ