For gamma-ray bursts (GRBs) born in a stellar wind, as the reverse shock
crosses the ejecta, usually the shocked regions are still precipitated by the
prompt MeV \gamma-ray emission. Because of the tight overlapping of the MeV
photon flow with the shocked regions, the optical depth for the GeV photons
produced in the shocks is very large. These high energy photons are absorbed by
the MeV photon flow and generate relativistic e^\pm pairs. These pairs
re-scatter the soft X-ray photons from the forward shock as well as the prompt
\gamma-ray photons and power detectable high energy emission, significant part
of which is in the sub-GeV energy range. Since the total energy contained in
the forward shock region and the reverse shock region are comparable, the
predicted sub-GeV emission is independent on whether the GRB ejecta are
magnetized (in which case the reverse shock IC and synchrotron self-Compton
emission is suppressed). As a result, a sub-GeV flash is a generic signature
for the GRB wind model, and it should be typically detectable by the future
{\em Gamma-Ray Large Area Telescope} (GLAST). Overlapping also influence
neutrino emission. Besides the 10^{15} \sim 10^{17} eV neutrino emission
powered by the interaction of the shock accelerated protons with the
synchrotron photons in both the forward and reverse shock regions, there comes
another 1014eV neutrino emission component powered by protons interacting
with the MeV photon flow. This last component has a similar spectrum to the one
generated in the internal shock phase, but the typical energy is slightly
lower.Comment: 7 pages, accepted for publication in Ap