28,804 research outputs found

    A new approach to analysing human-related accidents by combined use of HFACS and activity theory-based method

    Get PDF
    This study proposes a new method for modelling and analysing human-related accidents. It integrates HFACS (Human Factors Analysis and Classification System), which addresses most of the socio-technical system levels and offers a comprehensive failure taxonomy for analysing human errors, and AT (Activity Theory)-based approach, which provides an effective way for considering various contextual factors systematically in accident investigation. By combining them, the proposed method makes it more efficient to use the concepts and principles of AT. Additionally, it can help analysts use HFACS taxonomy more coherently to identify meaningful causal factors with a sound theoretical basis of human activities. Therefore, the proposed method can be effectively used to mitigate the limitations of traditional approaches to accident analysis, such as over-relying on a causality model and sticking to a root-cause, by making analysts look at an accident from a range of perspectives. To demonstrate the usefulness of the proposed method, we conducted a case study in nuclear power plants. Through the case study, we could confirm that it would be a useful method for modelling and analysing human-related accidents, enabling analysts to identify a plausible set of causal factors efficiently in a methodical consideration of contextual backgrounds surrounding human activities

    Generation of a composite grid for turbine flows and consideration of a numerical scheme

    Get PDF
    A composite grid was generated for flows in turbines. It consisted of the C-grid (or O-grid) in the immediate vicinity of the blade and the H-grid in the middle of the blade passage between the C-grids and in the upstream region. This new composite grid provides better smoothness, resolution, and orthogonality than any single grid for a typical turbine blade with a large camber and rounded leading and trailing edges. The C-H (or O-H) composite grid has an unusual grid point that is connected to more than four neighboring nodes in two dimensions (more than six neighboring nodes in three dimensions). A finite-volume lower-upper (LU) implicit scheme to be used on this grid poses no problem and requires no special treatment because each interior cell of this composite grid has only four neighboring cells in two dimensions (six cells in three dimensions). The LU implicit scheme was demonstrated to be efficient and robust for external flows in a broad flow regime and can be easily applied to internal flows and extended from two to three dimensions

    A Test of the Martingale Hypothesis

    Get PDF
    This paper proposes a statistical test of the martingale hypothesis. It can be used to test whether a given time series is a martingale process against certain non-martingale alternatives. The class of alternative processes against which our test has power is very general and it encompasses many nonlinear non-martingale processes which may not be detected using traditional spectrum-based or variance-ratio tests. We look at the hypothesis of martingale, in contrast with other existing methods which test for the hypothesis of martingale difference. Two different types of test are considered: one is a generalized Kolmogorov-Smirnov test and the other is a Cramer-von Mises type test. For the processes that are first order Markovian in mean, in particular, our approach yields the test statistics that neither depend upon any smoothing parameter nor require any resampling procedure to simulate the null distributions. Their null limiting distributions are nicely characterized as functionals of a continuous stochastic process so that the critical values are easily tabulated. We prove consistency of our tests and further investigate their finite sample properties via simulation. Our tests are found to be rather powerful in moderate size samples against a wide variety of non-martingales including exponential autoregressive, threshold autoregressive, markov switching, chaotic, and some of nonstationary processes.
    corecore