5,797 research outputs found

    Associative classifier for uncertain data

    Get PDF
    Associative classifiers are relatively easy for people to understand and often outperform decision tree learners on many classification problems. Existing associative classifiers only work with certain data. However, data uncertainty is prevalent in many real-world applications such as sensor network, market analysis and medical diagnosis. And uncertainty may render many conventional classifiers inapplicable to uncertain classification tasks. In this paper, based on U-Apriori algorothm and CBA algorithm, we propose an associative classifier for uncertain data, uCBA (uncertain Classification Based on Associative), which can classify both certain and uncertain data. The algorithm redefines the support, confidence, rule pruning and classification strategy of CBA. Experimental results on 21 datasets from UCI Repository demonstrate that the proposed algorithm yields good performance and has satisfactory performance even on highly uncertain data

    Allogeneic hematopoietic stem cell transplantation in China: where we are and where to go

    Get PDF
    Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an effective and sometimes the only curative therapy for patients with certain hematological diseases. Allo-HSCT has been practiced in China for approximately 30 years, and great improvements have been made within the past decade, particularly in fields such as the haploidentical HSCT system, strategies to overcome relapse and GVHD, and modified HSCT for elderly patients. This review will describe the current situation and provide a prospective of these unique aspects of Allo-HSCT in China

    Comparisons between Modal-Parameter-Based and Flexibility-Based Damage Identification Methods

    Get PDF
    Author name used in this publication: Y. Xia2013-2014 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    CNV analysis in Chinese children of mental retardation highlights a sex differentiation in parental contribution to de novo and inherited mutational burdens

    Get PDF
    Rare copy number variations (CNVs) are a known genetic etiology in neurodevelopmental disorders (NDD). Comprehensive CNV analysis was performed in 287 Chinese children with mental retardation and/or development delay (MR/DD) and their unaffected parents. When compared with 5,866 ancestry-matched controls, 11~12% more MR/DD children carried rare and large CNVs. The increased CNV burden in MR/DD was predominantly due to de novo CNVs, the majority of which (62%) arose in the paternal germline. We observed a 2~3 fold increase of large CNV burden in the mothers of affected children. By implementing an evidence-based review approach, pathogenic structural variants were identified in 14.3% patients and 2.4% parents, respectively. Pathogenic CNVs in parents were all carried by mothers. The maternal transmission bias of deleterious CNVs was further replicated in a published dataset. Our study confirms the pathogenic role of rare CNVs in MR/DD, and provides additional evidence to evaluate the dosage sensitivity of some candidate genes. It also supports a population model of MR/DD that spontaneous mutations in males’ germline are major contributor to the de novo mutational burden in offspring, with higher penetrance in male than female; unaffected carriers of causative mutations, mostly females, then contribute to the inherited mutational burden.published_or_final_versio

    Preparation and analysis of a new bioorganic metallic material

    Get PDF
    Biofouling on metal surfaces is one of the main reasons for increased ship drag. Many methods have already been used to reduce or remove it with moderate success. In this study, a synthetic peptide has been utilized to react with 304 stainless steel aiming to generate a bioorganic stainless steel using a facile technique. After the reaction, white matter was found on the surface of the treated stainless steel via SEM, whilst the nontreated stainless steel had none. Elemental analysis confirmed that excessive N existed on the surface of the treated samples using an integrated SEM-EDS instrument, implying the presence of peptides binding on the surface of the bioorganic stainless steel. The FTIR spectra showed amide A and II peaks on the surface of the bioorganic stainless steel suggesting that either the peptides grafted onto the steel surface or the polypeptide composition accumulated on the steel samples. XPS analysis of the treated steel demonstrated that there was nitrogen bonding on the surface and it was a chemical bond via a previously unreported chemical interaction. The treated steel has a markedly increased contact angle (water contact angle of 65.7 ± 4.7° for nontreated steel in comparison to treated, 96.4 ± 2.1°), which supported the observation of the wettability change of the surface, i.e. the decrease of the surface energy value after peptide treatment. The changes of the surface parameters (such as, Sa, Sq, Ssk and Sku) of the treated steel by surface analysis were observed

    Artificial Topological Superconductor by the Proximity Effect

    Get PDF
    published_or_final_versio

    Bacterial Community Structure of an IFAS-MBRs Wastewater Treatment Plant

    Get PDF
    In this work, the bacterial community putatively involved in BNR events of a UCT-MBMBR pilot plant was elucidated by both culture-dependent and metagenomics DNA analyses. The presence of bacterial isolates belonging to Bacillus (in the anoxic compartment) and to Acinetobacter, Stenotrophomonas, Rhodococcus, Escherichia and Aeromonas (in the aerobic compartment) is in agreement with the nitrification/denitrification processes observed in the plant. Moreover, the study of bacterial community structure by NGS revealed a microbial diversity suggesting a biochemical complexity which can be further explored and exploited to improve UCT-MBMBR plant performance

    Bacterial Community Structure of an IFAS-MBRs Wastewater Treatment Plant

    Get PDF
    In this work, the bacterial community putatively involved in BNR events of a UCT-MBMBR pilot plant was elucidated by both culture-dependent and metagenomics DNA analyses. The presence of bacterial isolates belonging to Bacillus (in the anoxic compartment) and to Acinetobacter, Stenotrophomonas, Rhodococcus, Escherichia and Aeromonas (in the aerobic compartment) is in agreement with the nitrification/denitrification processes observed in the plant. Moreover, the study of bacterial community structure by NGS revealed a microbial diversity suggesting a biochemical complexity which can be further explored and exploited to improve UCT-MBMBR plant performance
    corecore