806 research outputs found

    Rate-Based Transition Systems for Stochastic Process Calculi

    Get PDF
    A variant of Rate Transition Systems (RTS), proposed by Klin and Sassone, is introduced and used as the basic model for defining stochastic behaviour of processes. The transition relation used in our variant associates to each process, for each action, the set of possible futures paired with a measure indicating their rates. We show how RTS can be used for providing the operational semantics of stochastic extensions of classical formalisms, namely CSP and CCS. We also show that our semantics for stochastic CCS guarantees associativity of parallel composition. Similarly, in contrast with the original definition by Priami, we argue that a semantics for stochastic Ļ€-calculus can be provided that guarantees associativity of parallel composition

    Magnetic coupling of porphyrin molecules through graphene

    Full text link
    Graphene is expected to complement todays Si-based information technology. In particular, magnetic molecules in contact with graphene constitute a tantalizing approach towards organic spin electronics because of the reduced conductivity mismatch at the interface. In such a system a bit is represented by a single molecular magnetic moment, which must be stabilized against thermal fluctuations. Here, we show in a combined experimental and theoretical study that the moments of paramagnetic Co-octaethylporphyrin (CoOEP) molecules on graphene can be aligned by a remarkable antiferromagnetic coupling to a Ni substrate underneath the graphene. This coupling is mediated via the \pi\ electronic system of graphene, while no covalent bonds between the molecule and the substrate are established.Comment: 27 pages, 12 figures, Accepted at Adv. Mate

    A Hierarchy of Scheduler Classes for Stochastic Automata

    Get PDF
    Stochastic automata are a formal compositional model for concurrent stochastic timed systems, with general distributions and non-deterministic choices. Measures of interest are defined over schedulers that resolve the nondeterminism. In this paper we investigate the power of various theoretically and practically motivated classes of schedulers, considering the classic complete-information view and a restriction to non-prophetic schedulers. We prove a hierarchy of scheduler classes w.r.t. unbounded probabilistic reachability. We find that, unlike Markovian formalisms, stochastic automata distinguish most classes even in this basic setting. Verification and strategy synthesis methods thus face a tradeoff between powerful and efficient classes. Using lightweight scheduler sampling, we explore this tradeoff and demonstrate the concept of a useful approximative verification technique for stochastic automata

    Probabilistic Bisimulation: Naturally on Distributions

    Full text link
    In contrast to the usual understanding of probabilistic systems as stochastic processes, recently these systems have also been regarded as transformers of probabilities. In this paper, we give a natural definition of strong bisimulation for probabilistic systems corresponding to this view that treats probability distributions as first-class citizens. Our definition applies in the same way to discrete systems as well as to systems with uncountable state and action spaces. Several examples demonstrate that our definition refines the understanding of behavioural equivalences of probabilistic systems. In particular, it solves a long-standing open problem concerning the representation of memoryless continuous time by memory-full continuous time. Finally, we give algorithms for computing this bisimulation not only for finite but also for classes of uncountably infinite systems

    Sigref ā€“ A Symbolic Bisimulation Tool Box

    Get PDF
    We present a uniform signature-based approach to compute the most popular bisimulations. Our approach is implemented symbolically using BDDs, which enables the handling of very large transition systems. Signatures for the bisimulations are built up from a few generic building blocks, which naturally correspond to efficient BDD operations. Thus, the definition of an appropriate signature is the key for a rapid development of algorithms for other types of bisimulation. We provide experimental evidence of the viability of this approach by presenting computational results for many bisimulations on real-world instances. The experiments show cases where our framework can handle state spaces efficiently that are far too large to handle for any tool that requires an explicit state space description. This work was partly supported by the German Research Council (DFG) as part of the Transregional Collaborative Research Center ā€œAutomatic Verification and Analysis of Complex Systemsā€ (SFB/TR 14 AVACS). See www.avacs.org for more information

    Distribution-based bisimulation for labelled Markov processes

    Full text link
    In this paper we propose a (sub)distribution-based bisimulation for labelled Markov processes and compare it with earlier definitions of state and event bisimulation, which both only compare states. In contrast to those state-based bisimulations, our distribution bisimulation is weaker, but corresponds more closely to linear properties. We construct a logic and a metric to describe our distribution bisimulation and discuss linearity, continuity and compositional properties.Comment: Accepted by FORMATS 201

    Direct Evidence for Dominant Bond-directional Interactions in a Honeycomb Lattice Iridate Na2IrO3

    Get PDF
    Heisenberg interactions are ubiquitous in magnetic materials and have been prevailing in modeling and designing quantum magnets. Bond-directional interactions offer a novel alternative to Heisenberg exchange and provide the building blocks of the Kitaev model, which has a quantum spin liquid (QSL) as its exact ground state. Honeycomb iridates, A2IrO3 (A=Na,Li), offer potential realizations of the Kitaev model, and their reported magnetic behaviors may be interpreted within the Kitaev framework. However, the extent of their relevance to the Kitaev model remains unclear, as evidence for bond-directional interactions remains indirect or conjectural. Here, we present direct evidence for dominant bond-directional interactions in antiferromagnetic Na2IrO3 and show that they lead to strong magnetic frustration. Diffuse magnetic x-ray scattering reveals broken spin-rotational symmetry even above Neel temperature, with the three spin components exhibiting nano-scale correlations along distinct crystallographic directions. This spin-space and real-space entanglement directly manifests the bond-directional interactions, provides the missing link to Kitaev physics in honeycomb iridates, and establishes a new design strategy toward frustrated magnetism.Comment: Nature Physics, accepted (2015

    Hierarchical structure in the orbital entanglement spectrum in Fractional Quantum Hall systems

    Full text link
    We investigate the non-universal part of the orbital entanglement spectrum (OES) of the nu = 1/3 fractional quantum Hall effect (FQH) ground-state with Coulomb interactions. The non-universal part of the spectrum is the part that is missing in the Laughlin model state OES whose level counting is completely determined by its topological order. We find that the OES levels of the Coulomb interaction ground-state are organized in a hierarchical structure that mimic the excitation-energy structure of the model pseudopotential Hamiltonian which has a Laughlin ground state. These structures can be accurately modeled using Jain's "composite fermion" quasihole-quasiparticle excitation wavefunctions. To emphasize the connection between the entanglement spectrum and the energy spectrum, we also consider the thermodynamical OES of the model pseudopotential Hamiltonian at finite temperature. The observed good match between the thermodynamical OES and the Coulomb OES suggests a relation between the entanglement gap and the true energy gap.Comment: 16 pages, 19 figure
    • ā€¦
    corecore