27,297 research outputs found
Transfer-matrix renormalization group study of the spin ladders with cyclic four-spin interactions
The temperature dependence of the specific heat and spin susceptibility of
the spin ladders with cyclic four-spin interactions in the rung-singlet phase
is explored by making use of the transfer-matrix renormalization group method.
The values of spin gap are extracted from the specific heat and susceptibility,
respectively. It is found that for different relative strength between
interchain and intrachain interactions, the spin gap is approximately linear
with the cyclic four-spin interaction in the region far away from the critical
point. Furthermore, we show that the dispersion for the one-triplet magnon
branch can be obtained by numerically fitting on the partition function.Comment: 7 pages, 7 figures, 1 tabl
Relationship between the gamma-ray burst pulse width and energy due to the Doppler effect of fireballs
We study in details how the pulse width of gamma-ray bursts is related with
energy under the assumption that the sources concerned are in the stage of
fireballs. Due to the Doppler effect of fireballs, there exists a power law
relationship between the two quantities within a limited range of frequency.
The power law range and the power law index depend strongly on the observed
peak energy as well as the rest frame radiation form, and the upper and
lower limits of the power law range can be determined by . It is found
that, within the same power law range, the ratio of the of the rising
portion to that of the decaying phase of the pulses is also related with energy
in the form of power laws. A platform-power-law-platform feature could be
observed in the two relationships. In the case of an obvious softening of the
rest frame spectrum, the two power law relationships also exist, but the
feature would evolve to a peaked one. Predictions on the relationships in the
energy range covering both the BATSE and Swift bands for a typical hard burst
and a typical soft one are made. A sample of FRED (fast rise and exponential
decay) pulse bursts shows that 27 out of the 28 sources belong to either the
platform-power-law-platform feature class or the peaked feature group,
suggesting that the effect concerned is indeed important for most of the
sources of the sample. Among these bursts, many might undergo an obvious
softening evolution of the rest frame spectrum.Comment: Accepted for publication in The Astrophysical Journa
A pQCD-based description of heavy and light flavor jet quenching
We present a successful description of the medium modification of light and
heavy flavor jets within a perturbative QCD (pQCD) based approach. Only the
couplings involving hard partons are assumed to be weak. The effect of the
medium on a hard parton, per unit time, is encoded in terms of three
non-perturbative, related transport coefficients which describe the transverse
momentum squared gained, the elastic energy loss and diffusion in elastic
energy transfer. A fit of the centrality dependence of the suppression and the
azimuthal anisotropy of leading hadrons tends to favor somewhat larger
transport coefficients for heavy quarks. Imposing additional constraints based
on leading order (LO) Hard Thermal Loop (HTL) effective theory, leads to a
worsening of the fit.Comment: v2, 4 pages, 3 figure
High-Fidelity Archeointensity Results for the Late Neolithic Period From Central China
Archeomagnetism focuses on exploring high-resolution variations of the geomagnetic field over hundreds to thousands of years. In this study, we carried out a comprehensive study of chronology, absolute and relative paleointensity on a late Neolithic site in central China. Ages of the samples are constrained to be ~3,500–3,000 BCE, a period when available paleointensity data are sparse. We present a total of 64 high-fidelity absolute paleointensities, demonstrating the field varied quickly from ~55 to ~90 ZAm2 between ~3,500–3,000 BCE. Our results record a new archeomagnetic jerk around 3,300 BCE, which is probably non-dipolar origin. The new results provide robust constraints on global geomagnetic models. We calculated a revised Chinese archeointensity reference curve for future application. The variations of absolute and relative paleointensity versus depth show good consistency, reinforcing the reliability of our results. This new attempt of combining absolute and relative paleointenstiy provides a useful tool for future archeomagnetic research
Process and machine system development for the forming of miniature/micro sheet metal products
This paper reports on the current development of the process for the forming of thin sheet-metal micro-parts (t < 50µm) and the corresponding machine system which is part of the research and technological development of an EU funded integrated project - MASMICRO ("Integration of Manufacturing Systems for the Mass-Manufacture of Miniature/Micro-Products" (/www.masmicro.net/). The process development started with qualification of the fundamentals related to the forming of thin sheet-metals in industrial environment, for which a testing machine and several sets of the testing tools were developed. The process was further optimised, followed by new tool designs. Based on the experience gained during the process development, a new forming press which is suitable for industrial, mass-customised production, has been designed
A test of the power law relationship between gamma-ray burst pulse width ratio and energy expected in fireballs or uniform jets
Recently, under the assumption that the Doppler effect of the
relativistically expanding fireball surface is important, Qin et al. showed
that in most cases the power law relationship between the pulse width and
energy of gamma-ray bursts (GRBs)would exist in a certain energy range. We
check this prediction with two GRB samples which contain well identified
pulses. A power law anti-correlation between the full pulse width and energy
and a power law correlation between the pulse width ratio and energy are seen
in the light curves of the majority (around 65%) of bursts of the two samples
within the energy range of BATSE, suggesting that these bursts are likely to
arise from the emission associated with the shocks occurred on a
relativistically expanding fireball surface. For the rest of the bursts, the
relationships between these quantities were not predicted previously. We
propose to consider other spectral evolutionary patterns or other radiation
mechanisms such as a varying synchrotron or Comptonized spectrum to check if
the observed relationships for these rest bursts can also be accounted for by
the Doppler model. In addition, we find that the upper limits of the width
ratio for the two samples do not exceed 0.9, in agrement with what predicted
previously by the Doppler model. The plateau/power law/plateau and the peaked
features predicted and detected previously by Qin et al. are generally
observed, with the exceptions being noticed only in a few cases. According to
the distinct values of two power law indices of FWHM and ratio and energy, we
divide the bursts into three subsets which are located in different areas of
the two indices plane. We suspect that different locations of the two indices
might correspond to different mechanisms.Comment: 16 pages, 7 figures, MNRAS accepte
- …