38,564 research outputs found

    High-Efficient Parallel CAVLC Encoders on Heterogeneous Multicore Architectures

    Get PDF
    This article presents two high-efficient parallel realizations of the context-based adaptive variable length coding (CAVLC) based on heterogeneous multicore processors. By optimizing the architecture of the CAVLC encoder, three kinds of dependences are eliminated or weaken, including the context-based data dependence, the memory accessing dependence and the control dependence. The CAVLC pipeline is divided into three stages: two scans, coding, and lag packing, and be implemented on two typical heterogeneous multicore architectures. One is a block-based SIMD parallel CAVLC encoder on multicore stream processor STORM. The other is a component-oriented SIMT parallel encoder on massively parallel architecture GPU. Both of them exploited rich data-level parallelism. Experiments results show that compared with the CPU version, more than 70 times of speedup can be obtained for STORM and over 50 times for GPU. The implementation of encoder on STORM can make a real-time processing for 1080p @30fps and GPU-based version can satisfy the requirements for 720p real-time encoding. The throughput of the presented CAVLC encoders is more than 10 times higher than that of published software encoders on DSP and multicore platforms

    Non-damping oscillations at flaring loops

    Full text link
    Context. QPPs are usually detected as spatial displacements of coronal loops in imaging observations or as periodic shifts of line properties in spectroscopic observations. They are often applied for remote diagnostics of magnetic fields and plasma properties on the Sun. Aims. We combine imaging and spectroscopic measurements of available space missions, and investigate the properties of non-damping oscillations at flaring loops. Methods. We used the IRIS to measure the spectrum over a narrow slit. The double-component Gaussian fitting method was used to extract the line profile of Fe XXI 1354.08 A at "O I" window. The quasi-periodicity of loop oscillations were identified in the Fourier and wavelet spectra. Results. A periodicity at about 40 s is detected in the line properties of Fe XXI, HXR emissions in GOES 1-8 A derivative, and Fermi 26-50 keV. The Doppler velocity and line width oscillate in phase, while a phase shift of about Pi/2 is detected between the Doppler velocity and peak intensity. The amplitudes of Doppler velocity and line width oscillation are about 2.2 km/s and 1.9 km/s, respectively, while peak intensity oscillate with amplitude at about 3.6% of the background emission. Meanwhile, a quasi-period of about 155 s is identified in the Doppler velocity and peak intensity of Fe XXI, and AIA 131 A intensity. Conclusions. The oscillations at about 40 s are not damped significantly during the observation, it might be linked to the global kink modes of flaring loops. The periodicity at about 155 s is most likely a signature of recurring downflows after chromospheric evaporation along flaring loops. The magnetic field strengths of the flaring loops are estimated to be about 120-170 G using the MHD seismology diagnostics, which are consistent with the magnetic field modeling results using the flux rope insertion method.Comment: 9 pages, 9 figures, 1 table, accepted by A&

    An interactive multi-block grid generation system

    Get PDF
    A grid generation procedure combining interactive and batch grid generation programs was put together to generate multi-block grids for complex aircraft configurations. The interactive section provides the tools for 3D geometry manipulation, surface grid extraction, boundary domain construction for 3D volume grid generation, and block-block relationships and boundary conditions for flow solvers. The procedure improves the flexibility and quality of grid generation to meet the design/analysis requirements

    Dirac-Schr\"odinger equation for quark-antiquark bound states and derivation of its interaction kerne

    Full text link
    The four-dimensional Dirac-Schr\"odinger equation satisfied by quark-antiquark bound states is derived from Quantum Chromodynamics. Different from the Bethe-Salpeter equation, the equation derived is a kind of first-order differential equations of Schr\"odinger-type in the position space. Especially, the interaction kernel in the equation is given by two different closed expressions. One expression which contains only a few types of Green's functions is derived with the aid of the equations of motion satisfied by some kinds of Green's functions. Another expression which is represented in terms of the quark, antiquark and gluon propagators and some kinds of proper vertices is derived by means of the technique of irreducible decomposition of Green's functions. The kernel derived not only can easily be calculated by the perturbation method, but also provides a suitable basis for nonperturbative investigations. Furthermore, it is shown that the four-dimensinal Dirac-Schr\"odinger equation and its kernel can directly be reduced to rigorous three-dimensional forms in the equal-time Lorentz frame and the Dirac-Schr\"odinger equation can be reduced to an equivalent Pauli-Schr\"odinger equation which is represented in the Pauli spinor space. To show the applicability of the closed expressions derived and to demonstrate the equivalence between the two different expressions of the kernel, the t-channel and s-channel one gluon exchange kernels are chosen as an example to show how they are derived from the closed expressions. In addition, the connection of the Dirac-Schr\"odinger equation with the Bethe-Salpeter equation is discussed

    A Study of H2 Emission in Three Bipolar Proto-Planetary Nebulae: IRAS 16594-4656, Hen 3-401, and Rob 22

    Full text link
    We have carried out a spatial-kinematical study of three proto-planetary nebulae, IRAS 16594-4656, Hen 3-401, and Rob 22. High-resolution H2 images were obtained with NICMOS on the HST and high-resolution spectra were obtained with the Phoenix spectrograph on Gemini-South. IRAS 16594-4656 shows a "peanut-shaped" bipolar structure with H2 emission from the walls and from two pairs of more distant, point-symmetric faint blobs. The velocity structure shows the polar axis to be in the plane of the sky, contrary to the impression given by the more complex visual image and the visibility of the central star, with an ellipsoidal velocity structure. Hen 3-401 shows the H2 emission coming from the walls of the very elongated, open-ended lobes seen in visible light, along with a possible small disk around the star. The bipolar lobes appear to be tilted 10-15 deg with respect to the plane of the sky and their kinematics display a Hubble-like flow. In Rob 22, the H2 appears in the form of an "S" shape, approximately tracing out the similar pattern seen in the visible. H2 is especially seen at the ends of the lobes and at two opposite regions close to the unseen central star. The axis of the lobes is nearly in the plane of the sky. Expansion ages of the lobes are calculated to be approximately 1600 yr (IRAS 16594-4656), 1100 yr (Hen 3-401), and 640 yr (Rob 22), based upon approximate distances

    Renormalization of the Sigma-Omega model within the framework of U(1) gauge symmetry

    Full text link
    It is shown that the Sigma-Omega model which is widely used in the study of nuclear relativistic many-body problem can exactly be treated as an Abelian massive gauge field theory. The quantization of this theory can perfectly be performed by means of the general methods described in the quantum gauge field theory. Especially, the local U(1) gauge symmetry of the theory leads to a series of Ward-Takahashi identities satisfied by Green's functions and proper vertices. These identities form an uniquely correct basis for the renormalization of the theory. The renormalization is carried out in the mass-dependent momentum space subtraction scheme and by the renormalization group approach. With the aid of the renormalization boundary conditions, the solutions to the renormalization group equations are given in definite expressions without any ambiguity and renormalized S-matrix elememts are exactly formulated in forms as given in a series of tree diagrams provided that the physical parameters are replaced by the running ones. As an illustration of the renormalization procedure, the one-loop renormalization is concretely carried out and the results are given in rigorous forms which are suitable in the whole energy region. The effect of the one-loop renormalization is examined by the two-nucleon elastic scattering.Comment: 32 pages, 17 figure
    corecore