5,366 research outputs found
Thermal analysis comparison between two random glass fibre reinforced thermoplastic matrix composites bonded by adhesives using microwaves: preliminary results
[Abstract]: This paper compares the thermal analysis of two types of random glass fibre reinforced thermoplastic matrix composites joined by adhesives using microwave energy. Fixed frequency, 2.45 GHz, microwave facility is used to join thirty three percent by weight random glass fibre reinforced polystyrene composite [PS/GF (33%)] and thirty three percent by weight random glass fibre reinforced low density polyethylene composite [LDPE/GF (33%)]. The facility used is shown in Figure 1. With a given power level, the composites were exposed to various exposure times to microwave irradiation. The primer or coupling agent used was 5-minute two-part adhesive. The heat distribution of the samples of the two types of composites was analysed and compared. The relationship between the heat distribution and the lap shear strength of the samples was also compared and discussed
Anisotropic superconducting properties of aligned SmLaFeAsOF microcrystalline powder
The SmLaFeAsOF compound is a quasi-2D
layered superconductor with a superconducting transition temperature T = 52
K. Due to the Fe spin-orbital related anisotropic exchange coupling
(antiferromagnetic or ferromagnetic fluctuation), the tetragonal
microcrystalline powder can be aligned at room temperature using the
field-rotation method where the tetragonal -plane is parallel to the
aligned magnetic field B and -axis along the rotation axis.
Anisotropic superconducting properties with anisotropic diamagnetic ratio
2.4 + 0.6 was observed from low field susceptibility
(T) and magnetization M(B). The anisotropic low-field phase diagram
with the variation of lower critical field gives a zero-temperature penetration
depth (0) = 280 nm and (0) = 120 nm. The magnetic
fluctuation used for powder alignment at 300 K may be related with the pairing
mechanism of superconductivity at lower temperature.Comment: 4 pages, 6 figure
Anomalous physical properties of underdoped weak-ferromagnetic superconductor RuSrEuCuO
Similar to the optimal-doped, weak-ferromagnetic (WFM induced by canted
antiferromagnetism, T = 131 K) and superconducting (T = 56 K)
RuSrGdCuO, the underdoped RuSrEuCuO
(T = 133 K, T = 36 K) also exhibited a spontaneous vortex state
(SVS) between 16 K and 36 K. The low field (20 G) superconducting
hysteresis loop indicates a weak and narrow Meissner state region of average
lower critical field B(T) = B(0)[1 -
(T/T)], with B(0) = 7 G and T = 16 K. The
vortex melting transition (T = 21 K) below T obtained from
the broad resistivity drop and the onset of diamagnetic signal indicates a
vortex liquid region due to the coexistence and interplay between
superconductivity and WFM order. No visible jump in specific heat was observed
near T for Eu- and Gd-compound. This is not surprising, since the
electronic specific heat is easily overshadowed by the large phonon and
weak-ferromagnetic contributions. Furthermore, a broad resistivity transition
due to low vortex melting temperature would also lead to a correspondingly
reduced height of any specific heat jump. Finally, with the baseline from the
nonmagnetic Eu-compound, specific heat data analysis confirms the magnetic
entropy associated with antiferromagnetic ordering of Gd (J = S = 7/2)
at 2.5 K to be close to ln8 as expected.Comment: 7 figure
Complete classification of steerability under local filters and its relation with measurement incompatibility
Quantum steering is a central resource for one-sided device-independent quantum information. It is manipulated via one-way local operations and classical communication, such as local filtering on the trusted party. Here, we provide a necessary and sufficient condition for a steering assemblage to be transformable into another via local filtering. We characterize the equivalence classes with respect to filters in terms of the steering equivalent observables (SEO), first proposed to connect the problem of steerability and measurement incompatibility. We provide an efficient method to compute the extractable steerability that is maximal via local filters and show that it coincides with the incompatibility of the SEO. Moreover, we show that there always exists a bipartite state that provides an assemblage with steerability equal to the incompatibility of the measurements on the untrusted party. Finally, we investigate the optimal success probability and rates for transformation protocols (distillation and dilution) in the single-shot scenario together with examples
Temperature dependent d-d excitations in manganites probed by resonant inelastic x-ray scattering
We report the observation of temperature dependent electronic excitations in
various manganites utilizing resonant inelastic x-ray scattering (RIXS) at the
Mn K-edge. Excitations were observed between 1.5 and 16 eV with temperature
dependence found as high as 10 eV. The change in spectral weight between 1.5
and 5 eV was found to be related to the magnetic order and independent of the
conductivity. On the basis of LDA+U and Wannier function calculations, this
dependence is associated with intersite d-d excitations. Finally, the
connection between the RIXS cross-section and the loss function is addressed.Comment: 5 pages, 5 figure
- …