2,467 research outputs found

    Exact Solution of a Monomer-Dimer Problem: A Single Boundary Monomer on a Non-Bipartite Lattice

    Get PDF
    We solve the monomer-dimer problem on a non-bipartite lattice, the simple quartic lattice with cylindrical boundary conditions, with a single monomer residing on the boundary. Due to the non-bipartite nature of the lattice, the well-known method of a Temperley bijection of solving single-monomer problems cannot be used. In this paper we derive the solution by mapping the problem onto one on close-packed dimers on a related lattice. Finite-size analysis of the solution is carried out. We find from asymptotic expansions of the free energy that the central charge in the logarithmic conformal field theory assumes the value c=2c=-2.Comment: 15 pages, 1 figure, submitted to Phy. Rev. E; v2: revised Acknowledgment

    The Pfaffian solution of a dimer-monomer problem: Single monomer on the boundary

    Full text link
    We consider the dimer-monomer problem for the rectangular lattice. By mapping the problem into one of close-packed dimers on an extended lattice, we rederive the Tzeng-Wu solution for a single monomer on the boundary by evaluating a Pfaffian. We also clarify the mathematical content of the Tzeng-Wu solution by identifying it as the product of the nonzero eigenvalues of the Kasteleyn matrix.Comment: 4 Pages to appear in the Physical Review E (2006

    Exploring quantum phase transitions by the cross derivative of the ground state energy

    Full text link
    In this work, the cross derivative of the Gibbs free energy, initially proposed for phase transitions in classical spin models [Phys. Rev. B 101, 165123 (2020)], is extended for quantum systems. We take the spin-1 XXZ chain with anisotropies as an example to demonstrate its effectiveness and convenience for the Gaussian-type quantum phase transitions therein. These higher-order transitions are very challenging to determine by conventional methods. From the cross derivative with respect to the two anisotropic strengths, a single valley structure is observed clearly in each system size. The finite-size extrapolation of the valley depth shows a perfect logarithmic divergence, signaling the onset of a phase transition. Meanwhile, the critical point and the critical exponent for the correlation length are obtained by a power-law fitting of the valley location in each size. The results are well consistent with the best estimations in the literature. Its application to other quantum systems with continuous phase transitions is also discussed briefly.Comment: 7 pages, 7 figure

    Theory of impedance networks: The two-point impedance and LC resonances

    Get PDF
    We present a formulation of the determination of the impedance between any two nodes in an impedance network. An impedance network is described by its Laplacian matrix L which has generally complex matrix elements. We show that by solving the equation L u_a = lambda_a u_a^* with orthonormal vectors u_a, the effective impedance between nodes p and q of the network is Z = Sum_a [u_{a,p} - u_{a,q}]^2/lambda_a where the summation is over all lambda_a not identically equal to zero and u_{a,p} is the p-th component of u_a. For networks consisting of inductances (L) and capacitances (C), the formulation leads to the occurrence of resonances at frequencies associated with the vanishing of lambda_a. This curious result suggests the possibility of practical applications to resonant circuits. Our formulation is illustrated by explicit examples.Comment: 21 pages, 3 figures; v4: typesetting corrected; v5: Eq. (63) correcte

    Theory of resistor networks: The two-point resistance

    Full text link
    The resistance between arbitrary two nodes in a resistor network is obtained in terms of the eigenvalues and eigenfunctions of the Laplacian matrix associated with the network. Explicit formulas for two-point resistances are deduced for regular lattices in one, two, and three dimensions under various boundary conditions including that of a Moebius strip and a Klein bottle. The emphasis is on lattices of finite sizes. We also deduce summation and product identities which can be used to analyze large-size expansions of two-and-higher dimensional lattices.Comment: 30 pages, 5 figures now included; typos in Example 1 correcte

    Spanning Trees on Graphs and Lattices in d Dimensions

    Full text link
    The problem of enumerating spanning trees on graphs and lattices is considered. We obtain bounds on the number of spanning trees NSTN_{ST} and establish inequalities relating the numbers of spanning trees of different graphs or lattices. A general formulation is presented for the enumeration of spanning trees on lattices in d2d\geq 2 dimensions, and is applied to the hypercubic, body-centered cubic, face-centered cubic, and specific planar lattices including the kagom\'e, diced, 4-8-8 (bathroom-tile), Union Jack, and 3-12-12 lattices. This leads to closed-form expressions for NSTN_{ST} for these lattices of finite sizes. We prove a theorem concerning the classes of graphs and lattices L{\cal L} with the property that NSTexp(nzL)N_{ST} \sim \exp(nz_{\cal L}) as the number of vertices nn \to \infty, where zLz_{\cal L} is a finite nonzero constant. This includes the bulk limit of lattices in any spatial dimension, and also sections of lattices whose lengths in some dimensions go to infinity while others are finite. We evaluate zLz_{\cal L} exactly for the lattices we considered, and discuss the dependence of zLz_{\cal L} on d and the lattice coordination number. We also establish a relation connecting zLz_{\cal L} to the free energy of the critical Ising model for planar lattices L{\cal L}.Comment: 28 pages, latex, 1 postscript figure, J. Phys. A, in pres

    Influence of realistic parameters on state-of-the-art LWFA experiments

    Full text link
    We examine the influence of non-ideal plasma-density and non-Gaussian transverse laser-intensity profiles in the laser wakefield accelerator analytically and numerically. We find that the characteristic amplitude and scale length of longitudinal density fluctuations impacts on the final energies achieved by electron bunches. Conditions that minimize the role of the longitudinal plasma density fluctuations are found. The influence of higher order Laguerre-Gaussian laser pulses is also investigated. We find that higher order laser modes typically lead to lower energy gains. Certain combinations of higher order modes may, however, lead to higher electron energy gains.Comment: 16 pages, 6 figures; Accepted for publication in Plasma Physics and Controlled Fusio

    Ising model on nonorientable surfaces: Exact solution for the Moebius strip and the Klein bottle

    Full text link
    Closed-form expressions are obtained for the partition function of the Ising model on an M x N simple-quartic lattice embedded on a Moebius strip and a Klein bottle for finite M and N. The finite-size effects at criticality are analyzed and compared with those under cylindrical and toroidal boundary conditions. Our analysis confirms that the central charge is c=1/2.Comment: 8 pages, 3 eps figure
    corecore