20,972 research outputs found
Testing Game Theory in the Field: Swedish LUPI Lottery Games
Game theory is usually difficult to test precisely in the field because predictions typically
depend sensitively on features that are not controlled or observed. We conduct one such
test using field data from the Swedish lowest unique positive integer (LUPI) game. In the
LUPI game, players pick positive integers and whoever chose the lowest unique number
wins a fixed prize. Theoretical equilibrium predictions are derived assuming Poisson-
distributed uncertainty about the number of players, and tested using both field and
laboratory data. The field and lab data show similar patterns. Despite various deviations
from equilibrium, there is a surprising degree of convergence toward equilibrium. Some
of the deviations from equilibrium can be rationalized by a cognitive hierarchy model
Probing the electron-phonon coupling in ozone-doped graphene by Raman spectroscopy
We have investigated the effects of ozone treatment on graphene by Raman
scattering. Sequential ozone short-exposure cycles resulted in increasing the
doping levels as inferred from the blue shift of the 2 and peak
frequencies, without introducing significant disorder. The two-phonon 2 and
2 Raman peak intensities show a significant decrease, while, on the
contrary, the one-phonon G Raman peak intensity remains constant for the whole
exposure process. The former reflects the dynamics of the photoexcited
electrons (holes) and, specifically, the increase of the electron-electron
scattering rate with doping. From the ratio of 2 to 2 intensities, which
remains constant with doping, we could extract the ratio of electron-phonon
coupling parameters. This ratio is found independent on the number of layers up
to ten layers. Moreover, the rate of decrease of 2 and 2 intensities
with doping was found to slowdown inversely proportional to the number of
graphene layers, revealing the increase of the electron-electron collision
probability
Strain relaxation in InGaN/GaN micro-pillars evidenced by high resolution cathodoluminescence hyperspectral imaging
A size-dependent strain relaxation and its effects on the optical properties of InGaN/GaN multiple quantum wells (QWs) in micro-pillars have been investigated through a combination of high spatial resolution cathodoluminescence (CL) hyperspectral imaging and numerical modeling. The pillars have diameters (d) ranging from 2 to 150 μm and were fabricated from a III-nitride light-emitting diode (LED) structure optimized for yellow-green emission at ∼560 nm. The CL mapping enables us to investigate strain relaxation in these pillars on a sub-micron scale and to confirm for the first time that a narrow (≤2 μm) edge blue-shift occurs even for the large InGaN/GaN pillars (d > 10 μm). The observed maximum blue-shift at the pillar edge exceeds 7 nm with respect to the pillar centre for the pillars with diameters in the 2–16 μm range. For the smallest pillar (d = 2 μm), the total blue-shift at the edge is 17.5 nm including an 8.2 nm “global” blue-shift at the pillar centre in comparison with the unetched wafer. By using a finite element method with a boundary condition taking account of a strained GaN buffer layer which was neglected in previous simulation works, the strain distribution in the QWs of these pillars was simulated as a function of pillar diameter. The blue-shift in the QWs emission wavelength was then calculated from the strain-dependent changes in piezoelectric field, and the consequent modification of transition energy in the QWs. The simulation and experimental results agree well, confirming the necessity for considering the strained buffer layer in the strain simulation. These results provide not only significant insights into the mechanism of strain relaxation in these micro-pillars but also practical guidance for design of micro/nano LEDs
Observational constraints on cosmic neutrinos and dark energy revisited
Using several cosmological observations, i.e. the cosmic microwave background
anisotropies (WMAP), the weak gravitational lensing (CFHTLS), the measurements
of baryon acoustic oscillations (SDSS+WiggleZ), the most recent observational
Hubble parameter data, the Union2.1 compilation of type Ia supernovae, and the
HST prior, we impose constraints on the sum of neutrino masses (\mnu), the
effective number of neutrino species (\neff) and dark energy equation of
state (), individually and collectively. We find that a tight upper limit on
\mnu can be extracted from the full data combination, if \neff and are
fixed. However this upper bound is severely weakened if \neff and are
allowed to vary. This result naturally raises questions on the robustness of
previous strict upper bounds on \mnu, ever reported in the literature. The
best-fit values from our most generalized constraint read
\mnu=0.556^{+0.231}_{-0.288}\rm eV, \neff=3.839\pm0.452, and
at 68% confidence level, which shows a firm lower limit on
total neutrino mass, favors an extra light degree of freedom, and supports the
cosmological constant model. The current weak lensing data are already helpful
in constraining cosmological model parameters for fixed . The dataset of
Hubble parameter gains numerous advantages over supernovae when ,
particularly its illuminating power in constraining \neff. As long as is
included as a free parameter, it is still the standardizable candles of type Ia
supernovae that play the most dominant role in the parameter constraints.Comment: 39 pages, 15 figures, 7 tables, accepted to JCA
Topology of Knotted Optical Vortices
Optical vortices as topological objects exist ubiquitously in nature. In this
paper, by making use of the -mapping topological current theory, we
investigate the topology in the closed and knotted optical vortices. The
topological inner structure of the optical vortices are obtained, and the
linking of the knotted optical vortices is also given.Comment: 11 pages, no figures, accepted by Commun. Theor. Phys. (Beijing, P.
R. China
Reconsideration of Second Harmonic Generation from neat Air/Water Interface: Broken of Kleinman Symmetry from Dipolar Contribution
It has been generally accepted that there are significant quadrupolar and
bulk contributions to the second harmonic generation (SHG) reflected from the
neat air/water interface, as well as common liquid interfaces. Because there
has been no general methodology to determine the quadrupolar and bulk
contributions to the SHG signal from a liquid interface, this conclusion was
reached based on the following two experimental phenomena. Namely, the broken
of the macroscopic Kleinman symmetry, and the significant temperature
dependence of the SHG signal from the neat air/water interface. However,
because sum frequency generation vibrational spectroscopy (SFG-VS) measurement
of the neat air/water interface observed no apparent temperature dependence,
the temperature dependence in the SHG measurement has been reexamined and
proven to be an experimental artifact. Here we present a complete microscopic
analysis of the susceptibility tensors of the air/water interface, and show
that dipolar contribution alone can be used to address the issue of broken of
the macroscopic Kleinman symmetry at the neat air/water interface. Using this
analysis, the orientation of the water molecules at the interface can be
obtained, and it is consistent with the measurement from SFG-VS. Therefore, the
key rationales to conclude significantly quadrupolar and bulk contributions to
the SHG signal of the neat air/water interface can no longer be considered as
valid as before. This new understanding of the air/water interface can shed
light on our understanding of the nonlinear optical responses from other
molecular interfaces as well
Effect of a Zn impurity on T_c and its implication to pairing symmetry in LaFeAsOF
The effect of non-magnetic Zn impurity on superconductivity in
LaFeZnAsOF system is studied systematically. In the
presence of Zn impurity, the superconducting transition temperature increases
in the under-doped regime, remains unchanged in the optimally doped regime, and
is severely suppressed in the over-doped regime. Our results suggest a switch
of the symmetry of the superconducting order parameters from a -wave to
or -wave states as the charge carrier doping increases in
FeAs-based superconductors.Comment: 4 pages, 4 figures. Format changed and a few revisons mad
Biodiesel generation from oleaginous yeast Rhodotorula glutinis with xylose assimilating capacity
This study explored a strategy to convert agricultural and forestry residues into microbial lipid, which could be further transformed into biodiesel. Among the 250 yeast strains screened for xyloseassimilating capacity, eight oleaginous yeasts were selected by Sudan Black B test. The lipid content of these 8 strains was determined by soxhlet extraction method. One strain (T216) was found to producelipids up to 36.6%, and it was identified as Rhodotorula glutinis. The optimal fermentation conditions were obtained as follows: glucose as carbon source 100 g/L; yeast extract and peptone as nitrogensources at, respectively, 8 and 3 g/L; initial pH of 5.0; inoculation volume of 5%; temperature at 28oC, shaking speed of 180 r/min, cultivated for 96 h. Under these conditions, R. glutinis accumulated lipids up to 49.25% on a cellular biomass basis and the corresponding lipid productivity reached 14.66 g/L. Experiments with a 5-L bioreactor under the optimal culture conditions showed that R. glutinisaccumulated lipids up to 60.69%, resulting in 23.41 g/L in lipid productivity. More encouraging results were observed for the lipid production with alternative carbon sources. Corn stalk and Populuseuramevicana leaves hydrolysate could be used to substitute glucose. Chemical analysis indicated that biodiesel obtained by transesterification possessed similar composition to that from vegetable oil, one of the widely used feedstock for biodiesel
Structured Random Matrices
Random matrix theory is a well-developed area of probability theory that has
numerous connections with other areas of mathematics and its applications. Much
of the literature in this area is concerned with matrices that possess many
exact or approximate symmetries, such as matrices with i.i.d. entries, for
which precise analytic results and limit theorems are available. Much less well
understood are matrices that are endowed with an arbitrary structure, such as
sparse Wigner matrices or matrices whose entries possess a given variance
pattern. The challenge in investigating such structured random matrices is to
understand how the given structure of the matrix is reflected in its spectral
properties. This chapter reviews a number of recent results, methods, and open
problems in this direction, with a particular emphasis on sharp spectral norm
inequalities for Gaussian random matrices.Comment: 46 pages; to appear in IMA Volume "Discrete Structures: Analysis and
Applications" (Springer
- …