20,972 research outputs found

    Testing Game Theory in the Field: Swedish LUPI Lottery Games

    Get PDF
    Game theory is usually difficult to test precisely in the field because predictions typically depend sensitively on features that are not controlled or observed. We conduct one such test using field data from the Swedish lowest unique positive integer (LUPI) game. In the LUPI game, players pick positive integers and whoever chose the lowest unique number wins a fixed prize. Theoretical equilibrium predictions are derived assuming Poisson- distributed uncertainty about the number of players, and tested using both field and laboratory data. The field and lab data show similar patterns. Despite various deviations from equilibrium, there is a surprising degree of convergence toward equilibrium. Some of the deviations from equilibrium can be rationalized by a cognitive hierarchy model

    Probing the electron-phonon coupling in ozone-doped graphene by Raman spectroscopy

    Full text link
    We have investigated the effects of ozone treatment on graphene by Raman scattering. Sequential ozone short-exposure cycles resulted in increasing the pp doping levels as inferred from the blue shift of the 2DD and GG peak frequencies, without introducing significant disorder. The two-phonon 2DD and 2DD' Raman peak intensities show a significant decrease, while, on the contrary, the one-phonon G Raman peak intensity remains constant for the whole exposure process. The former reflects the dynamics of the photoexcited electrons (holes) and, specifically, the increase of the electron-electron scattering rate with doping. From the ratio of 2DD to 2DD intensities, which remains constant with doping, we could extract the ratio of electron-phonon coupling parameters. This ratio is found independent on the number of layers up to ten layers. Moreover, the rate of decrease of 2DD and 2DD' intensities with doping was found to slowdown inversely proportional to the number of graphene layers, revealing the increase of the electron-electron collision probability

    Strain relaxation in InGaN/GaN micro-pillars evidenced by high resolution cathodoluminescence hyperspectral imaging

    Get PDF
    A size-dependent strain relaxation and its effects on the optical properties of InGaN/GaN multiple quantum wells (QWs) in micro-pillars have been investigated through a combination of high spatial resolution cathodoluminescence (CL) hyperspectral imaging and numerical modeling. The pillars have diameters (d) ranging from 2 to 150 μm and were fabricated from a III-nitride light-emitting diode (LED) structure optimized for yellow-green emission at ∼560 nm. The CL mapping enables us to investigate strain relaxation in these pillars on a sub-micron scale and to confirm for the first time that a narrow (≤2 μm) edge blue-shift occurs even for the large InGaN/GaN pillars (d > 10 μm). The observed maximum blue-shift at the pillar edge exceeds 7 nm with respect to the pillar centre for the pillars with diameters in the 2–16 μm range. For the smallest pillar (d = 2 μm), the total blue-shift at the edge is 17.5 nm including an 8.2 nm “global” blue-shift at the pillar centre in comparison with the unetched wafer. By using a finite element method with a boundary condition taking account of a strained GaN buffer layer which was neglected in previous simulation works, the strain distribution in the QWs of these pillars was simulated as a function of pillar diameter. The blue-shift in the QWs emission wavelength was then calculated from the strain-dependent changes in piezoelectric field, and the consequent modification of transition energy in the QWs. The simulation and experimental results agree well, confirming the necessity for considering the strained buffer layer in the strain simulation. These results provide not only significant insights into the mechanism of strain relaxation in these micro-pillars but also practical guidance for design of micro/nano LEDs

    Observational constraints on cosmic neutrinos and dark energy revisited

    Full text link
    Using several cosmological observations, i.e. the cosmic microwave background anisotropies (WMAP), the weak gravitational lensing (CFHTLS), the measurements of baryon acoustic oscillations (SDSS+WiggleZ), the most recent observational Hubble parameter data, the Union2.1 compilation of type Ia supernovae, and the HST prior, we impose constraints on the sum of neutrino masses (\mnu), the effective number of neutrino species (\neff) and dark energy equation of state (ww), individually and collectively. We find that a tight upper limit on \mnu can be extracted from the full data combination, if \neff and ww are fixed. However this upper bound is severely weakened if \neff and ww are allowed to vary. This result naturally raises questions on the robustness of previous strict upper bounds on \mnu, ever reported in the literature. The best-fit values from our most generalized constraint read \mnu=0.556^{+0.231}_{-0.288}\rm eV, \neff=3.839\pm0.452, and w=1.058±0.088w=-1.058\pm0.088 at 68% confidence level, which shows a firm lower limit on total neutrino mass, favors an extra light degree of freedom, and supports the cosmological constant model. The current weak lensing data are already helpful in constraining cosmological model parameters for fixed ww. The dataset of Hubble parameter gains numerous advantages over supernovae when w=1w=-1, particularly its illuminating power in constraining \neff. As long as ww is included as a free parameter, it is still the standardizable candles of type Ia supernovae that play the most dominant role in the parameter constraints.Comment: 39 pages, 15 figures, 7 tables, accepted to JCA

    Topology of Knotted Optical Vortices

    Full text link
    Optical vortices as topological objects exist ubiquitously in nature. In this paper, by making use of the ϕ\phi-mapping topological current theory, we investigate the topology in the closed and knotted optical vortices. The topological inner structure of the optical vortices are obtained, and the linking of the knotted optical vortices is also given.Comment: 11 pages, no figures, accepted by Commun. Theor. Phys. (Beijing, P. R. China

    Reconsideration of Second Harmonic Generation from neat Air/Water Interface: Broken of Kleinman Symmetry from Dipolar Contribution

    Full text link
    It has been generally accepted that there are significant quadrupolar and bulk contributions to the second harmonic generation (SHG) reflected from the neat air/water interface, as well as common liquid interfaces. Because there has been no general methodology to determine the quadrupolar and bulk contributions to the SHG signal from a liquid interface, this conclusion was reached based on the following two experimental phenomena. Namely, the broken of the macroscopic Kleinman symmetry, and the significant temperature dependence of the SHG signal from the neat air/water interface. However, because sum frequency generation vibrational spectroscopy (SFG-VS) measurement of the neat air/water interface observed no apparent temperature dependence, the temperature dependence in the SHG measurement has been reexamined and proven to be an experimental artifact. Here we present a complete microscopic analysis of the susceptibility tensors of the air/water interface, and show that dipolar contribution alone can be used to address the issue of broken of the macroscopic Kleinman symmetry at the neat air/water interface. Using this analysis, the orientation of the water molecules at the interface can be obtained, and it is consistent with the measurement from SFG-VS. Therefore, the key rationales to conclude significantly quadrupolar and bulk contributions to the SHG signal of the neat air/water interface can no longer be considered as valid as before. This new understanding of the air/water interface can shed light on our understanding of the nonlinear optical responses from other molecular interfaces as well

    Effect of a Zn impurity on T_c and its implication to pairing symmetry in LaFeAsO1x_{1-x}Fx_x

    Full text link
    The effect of non-magnetic Zn impurity on superconductivity in LaFe1y_{1-y}Zny_yAsO1x_{1-x}Fx_x system is studied systematically. In the presence of Zn impurity, the superconducting transition temperature increases in the under-doped regime, remains unchanged in the optimally doped regime, and is severely suppressed in the over-doped regime. Our results suggest a switch of the symmetry of the superconducting order parameters from a ss-wave to s±s_{\pm} or dd-wave states as the charge carrier doping increases in FeAs-based superconductors.Comment: 4 pages, 4 figures. Format changed and a few revisons mad

    Biodiesel generation from oleaginous yeast Rhodotorula glutinis with xylose assimilating capacity

    Get PDF
    This study explored a strategy to convert agricultural and forestry residues into microbial lipid, which could be further transformed into biodiesel. Among the 250 yeast strains screened for xyloseassimilating capacity, eight oleaginous yeasts were selected by Sudan Black B test. The lipid content of these 8 strains was determined by soxhlet extraction method. One strain (T216) was found to producelipids up to 36.6%, and it was identified as Rhodotorula glutinis. The optimal fermentation conditions were obtained as follows: glucose as carbon source 100 g/L; yeast extract and peptone as nitrogensources at, respectively, 8 and 3 g/L; initial pH of 5.0; inoculation volume of 5%; temperature at 28oC, shaking speed of 180 r/min, cultivated for 96 h. Under these conditions, R. glutinis accumulated lipids up to 49.25% on a cellular biomass basis and the corresponding lipid productivity reached 14.66 g/L. Experiments with a 5-L bioreactor under the optimal culture conditions showed that R. glutinisaccumulated lipids up to 60.69%, resulting in 23.41 g/L in lipid productivity. More encouraging results were observed for the lipid production with alternative carbon sources. Corn stalk and Populuseuramevicana leaves hydrolysate could be used to substitute glucose. Chemical analysis indicated that biodiesel obtained by transesterification possessed similar composition to that from vegetable oil, one of the widely used feedstock for biodiesel

    Structured Random Matrices

    Full text link
    Random matrix theory is a well-developed area of probability theory that has numerous connections with other areas of mathematics and its applications. Much of the literature in this area is concerned with matrices that possess many exact or approximate symmetries, such as matrices with i.i.d. entries, for which precise analytic results and limit theorems are available. Much less well understood are matrices that are endowed with an arbitrary structure, such as sparse Wigner matrices or matrices whose entries possess a given variance pattern. The challenge in investigating such structured random matrices is to understand how the given structure of the matrix is reflected in its spectral properties. This chapter reviews a number of recent results, methods, and open problems in this direction, with a particular emphasis on sharp spectral norm inequalities for Gaussian random matrices.Comment: 46 pages; to appear in IMA Volume "Discrete Structures: Analysis and Applications" (Springer
    corecore