22,887 research outputs found
Sustainable global sourcing: A systematic literature review and bibliometric analysis
Sustainable Global Sourcing (SGS) is a rapidly emerging field with a geometric growth that is evidenced by the number of articles published within this field. The aim of this paper is to develop a systematic study quantitatively depicting the knowledge structure of the SGS field. A bibliometric analysis in conjunction with citation analysis and co-citation analysis is adopted to evaluate a total of 287 journal articles identified from systematic selection of influential work. A further content analysis is performed to obtain the detailed insights on the results of bibliometric analysis. Findings show five research clusters that constitute the SGS field, i.e., (i) Global Sourcing (GS) practice and environmental performance; (ii) Social sustainability/ethical sourcing practice in GS; (iii) Environmental evaluation criteria and certification; (iv) Fuzzy modelling of environmental practice in GS; (v) Effects of environmental and social sustainability practice on economic performance. On this basis, eight research directions are outlined for future research. This study provides an innovative method for systematic literature review work and robust indications for future investigations in the SGS field
IKEA: global sourcing and the sustainable leather initiative
The leather industry has traditionally been characterized by global operations across both developed and developing countries. Due to the long distance and contextual differences, there are numerous sustainability issues occurring along the global leather supply chain. Addressing these issues is both a responsibility and a challenge for multinational companies, especially in their global sourcing (GS) activities. This teaching case provides an example of implementing the sustainable leather initiative in the global sourcing process at IKEA. The case demonstrates IKEA’s sustainable leather initiative supported by its tailored GS strategy and GS structure and provides a benchmark of Sustainable GS for multinational companies and allows for a thorough discussion of how to implement a sustainability initiative while conducting GS. The case can be used to teach graduate/postgraduate in agricultural business, MBA and executive students on sustainable supply chain management and corporate social responsibility
Multiple multi-tier sustainable supply chain management: a social systems theory perspective
A multi-tier supply chain is a complex system as it covers a focal company and multiple tiers of suppliers in a complex supply chain network. This study explores the complexity in multi-tier sustainable supply chain management (SSCM) through a social systems theory perspective. We carried out a case study on IKEA China’s sustainable cotton initiative and examined its five cotton-textile supply chains. The primary data were collected through 22 semi-structured interviews with managers of IKEA China and their multi-tier suppliers. The findings suggest that in order to cope with environmental complexity in implementing multi-tier sustainable initiatives, focal companies tend to create both internal complexity and collaborative complexity in a variety of governance mechanisms. In addition, environmental overlap and available collaborative complexity increase in this process and can feed back into systems to facilitate further creation of requisite variety. We contribute to the multi-tier SSCM literature through providing an in-depth understanding of nuanced mechanisms of managing different tiers of suppliers to cope with complexities by adopting a social systems theory perspective. We also contribute to multi-tier supply chain governance mechanisms from an evolution perspective
Recommended from our members
Highly Stable Luminous "snakes" from CsPbX3 Perovskite Nanocrystals Anchored on Amine-Coated Silica Nanowires
CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals (NCs) are known for their exceptional optoelectronic properties, yet the material's instability toward polar solvents, heat, or UV irradiation greatly limits its further applications. Herein, an efficient in situ growing strategy has been developed to give highly stable perovskite NC composites (abbreviated CsPbX3@CA-SiO2) by anchoring CsPbX3 NCs onto silica nanowires (NWs), which effectively depresses the optical degradation of their photoluminescence (PL) and enhances stability. The preparation of surface-functionalized serpentine silica NWs is realized by a sol-gel process involving hydrolysis of a mixture of tetraethyl orthosilicate (TEOS), 3-aminopropyltriethoxysilane (APTES), and trimethoxy(octadecyl)silane (TMODS) in a water/oil emulsion. The serpentine NWs are formed via an anisotropic growth with lengths up to 8 μm. The free amino groups are employed as surface ligands for growing perovskite NCs, yielding distributed monodisperse NCs (∼8 nm) around the NW matrix. The emission wavelength is tunable by simple variation of the halide compositions (CsPbX3, X = Cl, Br, or I), and the composites demonstrate a high photoluminescence quantum yield (PLQY 32-69%). Additionally, we have demonstrated the composites CsPbX3@CA-SiO2 can be self-woven to form a porous 3D hierarchical NWs membrane, giving rise to a superhydrophobic surface with hierarchical micro/nano structural features. The resulting composites exhibit high stability toward water, heat, and UV irradiation. This work elucidates an effective strategy to incorporate perovskite nanocrystals onto functional matrices as multifunctional stable light sources
A Morphological Approach to the Pulsed Emission from Soft Gamma Repeaters
We present a geometrical methodology to interpret the periodical light curves
of Soft Gamma Repeaters based on the magnetar model and the numerical
arithmetic of the three-dimensional magnetosphere model for the young pulsars.
The hot plasma released by the star quake is trapped in the magnetosphere and
photons are emitted tangent to the local magnetic field lines. The variety of
radiation morphologies in the burst tails and the persistent stages could be
well explained by the trapped fireballs on different sites inside the closed
field lines. Furthermore, our numerical results suggests that the pulse profile
evolution of SGR 1806-20 during the 27 December 2004 giant flare is due to a
lateral drift of the emitting region in the magnetosphere.Comment: 7 figures, accepted by Ap
Challenges of Primary Frequency Control and Benefits of Primary Frequency Response Support from Electric Vehicles
As the integration of wind generation displaces conventional plants, system inertia provided by rotating mass declines, causing concerns over system frequency stability. This paper implements an advanced stochastic scheduling model with inertia-dependent fast frequency response requirements to investigate the challenges on the primary frequency control in the future Great Britain electricity system. The results suggest that the required volume and the associated cost of primary frequency response increase significantly along with the increased capacity of wind plants. Alternative measures (e.g. electric vehicles) have been proposed to alleviate these concerns. Therefore, this paper also analyses the benefits of primary frequency response support from electric vehicles in reducing system operation cost, wind curtailment and carbon emissions
Hall coefficient and Hc2 in underdoped LaFeAsO0.95F0.05
The electrical resistivity and Hall coefficient of LaFeAsO0.95F0.05
polycrystalline samples were measured in pulsed magnetic fields up to m0H = 60
T from room temperature to 1.5 K. The resistance of the normal state shows a
negative temperature coefficient (dr/dT < 0) below 70 K for this composition,
indicating insulating ground state in underdoped LaFeAsO system in contrast to
heavily doped compound. The charge carrier density obtained from Hall effect
can be described as constant plus a thermally activated term with an energy gap
DE = 630 K. Upper critical field, Hc2, estimated from resistivity measurements,
exceeds 75 T with zero-field Tc = 26.3 K, suggesting an unconventional nature
for superconductivity.Comment: 12 pages and 4 figure
Vortices, circumfluence, symmetry groups and Darboux transformations of the (2+1)-dimensional Euler equation
The Euler equation (EE) is one of the basic equations in many physical fields
such as fluids, plasmas, condensed matter, astrophysics, oceanic and
atmospheric dynamics. A symmetry group theorem of the (2+1)-dimensional EE is
obtained via a simple direct method which is thus utilized to find \em exact
analytical \rm vortex and circumfluence solutions. A weak Darboux
transformation theorem of the (2+1)-dimensional EE can be obtained for \em
arbitrary spectral parameter \rm from the general symmetry group theorem. \rm
Possible applications of the vortex and circumfluence solutions to tropical
cyclones, especially Hurricane Katrina 2005, are demonstrated.Comment: 25 pages, 9 figure
- …