242 research outputs found

    Observation of inhibited electron-ion coupling in strongly heated graphite

    Get PDF
    Creating non-equilibrium states of matter with highly unequal electron and lattice temperatures (Tele≠Tion) allows unsurpassed insight into the dynamic coupling between electrons and ions through time-resolved energy relaxation measurements. Recent studies on low-temperature laser-heated graphite suggest a complex energy exchange when compared to other materials. To avoid problems related to surface preparation, crystal quality and poor understanding of the energy deposition and transport mechanisms, we apply a different energy deposition mechanism, via laser-accelerated protons, to isochorically and non-radiatively heat macroscopic graphite samples up to temperatures close to the melting threshold. Using time-resolved x ray diffraction, we show clear evidence of a very small electron-ion energy transfer, yielding approximately three times longer relaxation times than previously reported. This is indicative of the existence of an energy transfer bottleneck in non-equilibrium warm dense matter

    Novel Jeff = 1/2 Mott State Induced by Relativistic Spin-Orbit Coupling in Sr2IrO4

    Get PDF
    We investigated electronic structure of 5d transition-metal oxide Sr2IrO4 using angle-resolved photoemission, optical conductivity, and x-ray absorption measurements and first-principles band calculations. The system was found to be well described by novel effective total angular momentum Jeff states, in which relativistic spin-orbit (SO) coupling is fully taken into account under a large crystal field. Despite of delocalized Ir 5d states, the Jeff-states form so narrow bands that even a small correlation energy leads to the Jeff = 1/2 Mott ground state with unique electronic and magnetic behaviors, suggesting a new class of the Jeff quantum spin driven correlated-electron phenomena.Comment: 12 pages, 4 figure

    A Novel Behavioral Assay for Measuring Cold Sensation in Mice

    Get PDF
    Behavioral models of cold responses are important tools for exploring the molecular mechanisms of cold sensation. To complement the currently cold behavioral assays and allow further studies of these mechanisms, we have developed a new technique to measure the cold response threshold, the cold plantar assay. In this assay, animals are acclimated on a glass plate and a cold stimulus is applied to the hindpaw through the glass using a pellet of compressed dry ice. The latency to withdrawal from the cooled glass is used as a measure of the cold response threshold of the rodents, and the dry ice pellet provides a ramping cold stimulus on the glass that allows the correlation of withdrawal latency values to rough estimates of the cold response threshold temperature. The assay is highly sensitive to manipulations including morphine-induced analgesia, Complete Freund's Adjuvant-induced inflammatory allodynia, and Spinal Nerve Ligation-induced neuropathic allodynia

    Hybrid crystalline-ITO/metal nanowire mesh transparent electrodes and their application for highly flexible perovskite solar cells

    Get PDF
    Here, we propose crystalline indium tin oxide/metal nanowire composite electrode (c-ITO/metal NW-GFRHybrimer) films as a robust platform for flexible optoelectronic devices. A very thin c-ITO overcoating layer was introduced to the surface-embedded metal nanowire (NW) network. The c-ITO/metal NW-GFRHybrimer films exhibited outstanding mechanical flexibility, excellent optoelectrical properties and thermal/chemical robustness. Highly flexible and efficient metal halide perovskite solar cells were fabricated on the films. The devices on the c-ITO/AgNW- and c-ITO/CuNW-GFRHybrimer films exhibited power conversion efficiency values of 14.15% and 12.95%, respectively. A synergetic combination of the thin c-ITO layer and the metal NW mesh transparent conducting electrode will be beneficial for use in flexible optoelectronic applications

    Electron-Phonon Interactions in Graphene, Bilayer Graphene, and Graphite

    Full text link
    Using first-principles techniques, we calculate the renormalization of the electron Fermi velocity and the vibrational lifetimes arising from electron-phonon interactions in doped bilayer graphene and in graphite and compare the results with the corresponding quantities in graphene. For similar levels of doping, the Fermi velocity renormalization in bilayer graphene and in graphite is found to be approximately 30% larger than that in graphene. In the case of bilayer graphene, this difference is shown to arise from the interlayer interaction. We discuss our findings in the light of recent photoemission and Raman spectroscopy experiments.Comment: 6 pages, 4 figure
    corecore