10,375 research outputs found

    Tris(hydroxypropyl)phosphine Oxide: A Chiral Three-Dimensional Material with Nonlinear Optical Properties

    Get PDF
    The achiral C_(3v) organic phosphine tris(hydroxypropyl)phosphine oxide (1) crystallizes in the unusual chiral hexagonal space group P6_3. The structure is highly ordered because each phosphine oxide moiety forms three hydrogen bonds with adjacent hydroxy groups from three different molecules. The properties of the crystals and the presence of hydrogen bonding interactions were investigated using single crystal Raman spectroscopy. The crystals show nonlinear optical properties and are capable of efficient second harmonic generation

    A systematic TMRT observational study of Galactic 12^{12}C/13^{13}C ratios from Formaldehyde

    Full text link
    We present observations of the C-band 1101111_{10}-1_{11} (4.8 GHz) and Ku-band 2112122_{11}-2_{12} (14.5 GHz) K-doublet lines of H2_2CO and the C-band 1101111_{10}-1_{11} (4.6 GHz) line of H2_213^{13}CO toward a large sample of Galactic molecular clouds, through the Shanghai Tianma 65-m radio telescope (TMRT). Our sample with 112 sources includes strong H2_2CO sources from the TMRT molecular line survey at C-band and other known H2_2CO sources. All three lines are detected toward 38 objects (43 radial velocity components) yielding a detection rate of 34\%. Complementary observations of their continuum emission at both C- and Ku-bands were performed. Combining spectral line parameters and continuum data, we calculate the column densities, the optical depths and the isotope ratio H2_212^{12}CO/H2_213^{13}CO for each source. To evaluate photon trapping caused by sometimes significant opacities in the main isotopologue's rotational mm-wave lines connecting our measured K-doublets, and to obtain 12^{12}C/13^{13}C abundance ratios, we used the RADEX non-LTE model accounting for radiative transfer effects. This implied the use of the new collision rates from \citet{Wiesenfeld2013}. Also implementing distance values from trigonometric parallax measurements for our sources, we obtain a linear fit of 12^{12}C/13^{13}C = (5.08±\pm1.10)DGC_{GC} + (11.86±\pm6.60), with a correlation coefficient of 0.58. DGC_{GC} refers to Galactocentric distances. Our 12^{12}C/13^{13}C ratios agree very well with the ones deduced from CN and C18^{18}O but are lower than those previously reported on the basis of H2_2CO, tending to suggest that the bulk of the H2_2CO in our sources was formed on dust grain mantles and not in the gas phase.Comment: 27 pages, 8 figures, 7 tables. Accepted for publication in The Astrophysical Journa

    Trapped interacting two-component bosons

    Full text link
    In this paper we solve one dimensional trapped SU(2) bosons with repulsive δ\delta-function interaction by means of Bethe-ansatz method. The features of ground state and low-lying excited states are studied by numerical and analytic methods. We show that the ground state is an isospin "ferromagnetic" state which differs from spin-1/2 fermions system. There exist three quasi-particles in the excitation spectra, and both holon-antiholon and holon-isospinon excitations are gapless for large systems. The thermodynamics equilibrium of the system at finite temperature is studied by thermodynamic Bethe ansatz. The thermodynamic quantities, such as specific heat etc. are obtained for the case of strong coupling limit.Comment: 15 pages, 9 figure

    Glauber Critical Dynamics: Exact Solution of the Kinetic Gaussian Model

    Full text link
    In this paper, we have exactly solved Glauber critical dynamics of the Gaussian model on three dimensions. Of course, it is much easy to apply to low dimensional case. The key steps are that we generalize the spin change mechanism from Glauber's single-spin flipping to single-spin transition and give a normalized version of the transition probability . We have also investigated the dynamical critical exponent and found surprisingly that the dynamical critical exponent is highly universal which refer to that for one- two- and three-dimensions they have same value independent of spatial dimensionality in contrast to static (equilibrium) critical exponents.Comment: 9 page

    The Mach-Zehnder and the Teleporter

    Get PDF
    We suggest a self-testing teleportation configuration for photon q-bits based on a Mach-Zehnder interferometer. That is, Bob can tell how well the input state has been teleported without knowing what that input state was. One could imagine building a "locked" teleporter based on this configuration. The analysis is performed for continuous variable teleportation but the arrangement could equally be applied to discrete manipulations.Comment: 4 pages, 5 figure

    In-plane Tunneling Spectrum into a [110]-Oriented High-TcT_c Superconductor in the Pseudogap Regime

    Full text link
    Both the differential tunneling conductance and the surface local density of states (LDOS) of a [110]-oriented high-temperature superconductor in the pseudogap (PG) regime are studied theoretically. As a competing candidate for the mechanism of PG state, the charge-density wave (CDW), spin-density wave (SDW), dd-density wave (DDW), and d-wave superconducting (DSC) orderings show distinct features in the tunneling conductance. For the CDW, SDW, and DSC orderings, the tunneling conductance approaches the surface LDOS as the barrier potential is increased. For the DDW ordering, we show for the first time that there exist midgap states at the [110] surface, manifesting themselves as a sharp zero-energy peak in the LDOS, as in the case of DSC ordering. However, due to the particle-hole pair nature of the DDW state, these states do not carry current, and consequently the one-to-one correspondence between the tunneling conductance and the surface LDOS is absent.Comment: 5 pages, 4 figures embedded in the tex

    Permeation of CO2 and N2 through glassy poly(dimethyl phenylene) oxide under steady- and presteady-state conditions

    Get PDF
    Glassy polymers are often used for gas separations because of their high selectivity. Although the dual-mode permeation model correctly fits their sorption and permeation isotherms, its physical interpretation is disputed, and it does not describe permeation far from steady state, a condition expected when separations involve intermittent renewable energy sources. To develop a more comprehensive permeation model, we combine experiment, molecular dynamics, and multiscale reaction–diffusion modeling to characterize the time-dependent permeation of N2 and CO2 through a glassy poly(dimethyl phenylene oxide) membrane, a model system. Simulations of experimental time-dependent permeation data for both gases in the presteady-state and steady-state regimes show that both single- and dual-mode reaction–diffusion models reproduce the experimental observations, and that sorbed gas concentrations lag the external pressure rise. The results point to environment-sensitive diffusion coefficients as a vital characteristic of transport in glassy polymers

    Enhancement of shot noise due to the fluctuation of Coulomb interaction

    Get PDF
    We have developed a theoretical formalism to investigate the contribution of fluctuation of Coulomb interaction to the shot noise based on Keldysh non-equilibrium Green's function method. We have applied our theory to study the behavior of dc shot noise of atomic junctions using the method of nonequilibrium Green's function combined with the density functional theory (NEGF-DFT). In particular, for atomic carbon wire consisting 4 carbon atoms in contact with two Al(100) electrodes, first principles calculation within NEGF-DFT formalism shows a negative differential resistance (NDR) region in I-V curve at finite bias due to the effective band bottom of the Al lead. We have calculated the shot noise spectrum using the conventional gauge invariant transport theory with Coulomb interaction considered explicitly on the Hartree level along with exchange and correlation effect. Although the Fano factor is enhanced from 0.6 to 0.8 in the NDR region, the expected super-Poissonian behavior in the NDR regionis not observed. When the fluctuation of Coulomb interaction is included in the shot noise, our numerical results show that the Fano factor is greater than one in the NDR region indicating a super-Poissonian behavior

    Josephson Current in the Presence of a Precessing Spin

    Full text link
    The Josephson current in the presence of a precessing spin between various types of superconductors is studied. It is shown that the Josephson current flowing between two spin-singlet pairing superconductors is not modulated by the precession of the spin. When both superconductors have equal-spin-triplet pairing state, the flowing Josephson current is modulated with twice of the Larmor frequency by the precessing spin. It was also found that up to the second tunneling matrix elements, no Josephson current can occur with only a direct exchange interaction between the localized spin and the conduction electrons, if the two superconductors have different spin-parity pairing states.Comment: 5 pages, 1 figur
    corecore