2,888 research outputs found

    Multi-factor service design: identification and consideration of multiple factors of the service in its design process

    Get PDF
    Service design is a multidisciplinary area that helps innovate services by bringing new ideas to customers through a design-thinking approach. Services are affected by multiple factors, which should be considered in designing services. In this paper, we propose the multi-factor service design (MFSD) method, which helps consider the multi-factor nature of service in the service design process. The MFSD method has been developed through and used in five service design studies with industry and government. The method addresses the multi-factor nature of service for systematic service design by providing the following guidelines: (1) identify key factors that affect the customer value creation of the service in question (in short, value creation factors), (2) define the design space of the service based on the value creation factors, and (3) design services and represent them based on the factors. We provide real stories and examples from the five service design studies to illustrate the MFSD method and demonstrate its utility. This study will contribute to the design of modern complex services that are affected by varied factors

    Enhancing Distorted Metal Organic Framework Derived ZnO as Anode Material for Lithium Storage by the Addition of Ag2S Quantum Dots.

    Get PDF
    The lithium storage properties of the distorted metal-organic framework (MOF) derived nanosized ZnO@C are significantly improved by the introduction of Ag2S quantum dots (QDs) during the processing of the material. In the thermal treatment, the Ag2S QDs react to produce Ag nanoparticles and ZnS. The metal nanoparticles act to shorten electron pathways and improve the connectivity of the matrix and the partial sulfidation of the ZnO surface improves the cycling stability of the material. The electrochemical properties of ZnO@C, Ag2S QDs treated ZnO@C and the amorphous carbon in ZnO@C have been compared. The small weight ratio of Ag2S QDs to ZnO@C at 1:180 shows the best performance in lithium storage. The exhibited specific capacities are improved and retained remarkably in the cycling at high current rates. At low current densi-ties (200 mA g-1) treatment of ZnO@C with Ag2S QDs results in a 38% increase in the specific capacity

    Comparison of the Airtraq® and Truview® laryngoscopes to the Macintosh laryngoscope for use by Advanced Paramedics in easy and simulated difficult intubation in manikins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Paramedics are frequently required to perform tracheal intubation, a potentially life-saving manoeuvre in severely ill patients, in the prehospital setting. However, direct laryngoscopy is often more difficult in this environment, and failed tracheal intubation constitutes an important cause of morbidity. Novel indirect laryngoscopes, such as the Airtraq<sup>® </sup>and Truview<sup>® </sup>laryngoscopes may reduce this risk.</p> <p>Methods</p> <p>We compared the efficacy of these devices to the Macintosh laryngoscope when used by 21 Paramedics proficient in direct laryngoscopy, in a randomized, controlled, manikin study. Following brief didactic instruction with the Airtraq<sup>® </sup>and Truview<sup>® </sup>laryngoscopes, each participant took turns performing laryngoscopy and intubation with each device, in an easy intubation scenario and following placement of a hard cervical collar, in a SimMan<sup>® </sup>manikin.</p> <p>Results</p> <p>The Airtraq<sup>® </sup>reduced the number of optimization manoeuvres and reduced the potential for dental trauma when compared to the Macintosh, in both the normal and simulated difficult intubation scenarios. In contrast, the Truview<sup>® </sup>increased the duration of intubation attempts, and required a greater number of optimization manoeuvres, compared to both the Macintosh and Airtraq<sup>® </sup>devices.</p> <p>Conclusion</p> <p>The Airtraq<sup>® </sup>laryngoscope performed more favourably than the Macintosh and Truview<sup>® </sup>devices when used by Paramedics in this manikin study. Further studies are required to extend these findings to the clinical setting.</p

    Comparison of the Airtraq® and Truview® laryngoscopes to the Macintosh laryngoscope for use by Advanced Paramedics in easy and simulated difficult intubation in manikins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Paramedics are frequently required to perform tracheal intubation, a potentially life-saving manoeuvre in severely ill patients, in the prehospital setting. However, direct laryngoscopy is often more difficult in this environment, and failed tracheal intubation constitutes an important cause of morbidity. Novel indirect laryngoscopes, such as the Airtraq<sup>® </sup>and Truview<sup>® </sup>laryngoscopes may reduce this risk.</p> <p>Methods</p> <p>We compared the efficacy of these devices to the Macintosh laryngoscope when used by 21 Paramedics proficient in direct laryngoscopy, in a randomized, controlled, manikin study. Following brief didactic instruction with the Airtraq<sup>® </sup>and Truview<sup>® </sup>laryngoscopes, each participant took turns performing laryngoscopy and intubation with each device, in an easy intubation scenario and following placement of a hard cervical collar, in a SimMan<sup>® </sup>manikin.</p> <p>Results</p> <p>The Airtraq<sup>® </sup>reduced the number of optimization manoeuvres and reduced the potential for dental trauma when compared to the Macintosh, in both the normal and simulated difficult intubation scenarios. In contrast, the Truview<sup>® </sup>increased the duration of intubation attempts, and required a greater number of optimization manoeuvres, compared to both the Macintosh and Airtraq<sup>® </sup>devices.</p> <p>Conclusion</p> <p>The Airtraq<sup>® </sup>laryngoscope performed more favourably than the Macintosh and Truview<sup>® </sup>devices when used by Paramedics in this manikin study. Further studies are required to extend these findings to the clinical setting.</p

    Controlled Orientation of Active Sites in a Nanostructured Multienzyme Complex

    Get PDF
    Multistep cascade reactions in nature maximize reaction efficiency by co-assembling related enzymes. Such organization facilitates the processing of intermediates by downstream enzymes. Previously, the studies on multienzyme nanocomplexes assembled on DNA scaffolds demonstrated that closer interenzyme distance enhances the overall reaction efficiency. However, it remains unknown how the active site orientation controlled at nanoscale can have an effect on multienzyme reaction. Here, we show that controlled alignment of active sites promotes the multienzyme reaction efficiency. By genetic incorporation of a non-natural amino acid and two compatible bioorthogonal chemistries, we conjugated mannitol dehydrogenase to formate dehydrogenase with the defined active site arrangement with the residue-level accuracy. The study revealed that the multienzyme complex with the active sites directed towards each other exhibits four-fold higher relative efficiency enhancement in the cascade reaction and produces 60% more D-mannitol than the other complex with active sites directed away from each other.ope

    Biofilter aquaponic system for nutrients removal from fresh market wastewater

    Get PDF
    Aquaponics is a significant wastewater treatment system which refers to the combination of conventional aquaculture (raising aquatic organism) with hydroponics (cultivating plants in water) in a symbiotic environment. This system has a high ability in removing nutrients compared to conventional methods because it is a natural and environmentally friendly system (aquaponics). The current chapter aimed to review the possible application of aquaponics system to treat fresh market wastewater with the intention to highlight the mechanism of phytoremediation occurs in aquaponic system. The literature revealed that aquaponic system was able to remove nutrients in terms of nitrogen and phosphorus

    Robust isothermal electric switching of interface magnetization: A route to voltage-controlled spintronics

    Full text link
    Roughness-insensitive and electrically controllable magnetization at the (0001) surface of antiferromagnetic chromia is observed using magnetometry and spin-resolved photoemission measurements and explained by the interplay of surface termination and magnetic ordering. Further, this surface in placed in proximity with a ferromagnetic Co/Pd multilayer film. Exchange coupling across the interface between chromia and Co/Pd induces an electrically controllable exchange bias in the Co/Pd film, which enables a reversible isothermal (at room temperature) shift of the global magnetic hysteresis loop of the Co/Pd film along the magnetic field axis between negative and positive values. These results reveal the potential of magnetoelectric chromia for spintronic applications requiring non-volatile electric control of magnetization.Comment: Single PDF file: 27 pages, 6 figures; version of 12/30/09; submitted to Nature Material

    Towards quantum computing with single atoms and optical cavities on atom chips

    Full text link
    We report on recent developments in the integration of optical microresonators into atom chips and describe some fabrication and implementation challenges. We also review theoretical proposals for quantum computing with single atoms based on the observation of photons leaking through the cavity mirrors. The use of measurements to generate entanglement can result in simpler, more robust and scalable quantum computing architectures. Indeed, we show that quantum computing with atom-cavity systems is feasible even in the presence of relatively large spontaneous decay rates and finite photon detector efficiencies.Comment: 14 pages, 6 figure

    Head-to-head comparison of amplified plasmonic exosome Aβ42 platform and single-molecule array immunoassay in a memory clinic cohort

    Get PDF
    Background: Various blood biomarkers reflecting brain amyloid‐β (Aβ) load have recently been proposed with promising results. However, to date, no comparative study among blood biomarkers has been reported. Our objective is to examine the diagnostic performance and cost effectiveness of three blood biomarkers on the same cohort. Methods: Using the same cohort (n=68), we compared the performance of the single‐molecule array (Simoa)‐Aβ40 and Aβ42, Aβ42/Aβ40 and the amplified plasmonic exosome (APEX)‐Aβ42 blood biomarkers using amyloid PET as the reference standard. We also determined the extent to which these blood tests can reduce the recruitment cost of clinical trials by identifying Amyloid positive (Aβ+) participants. Results: Compared to Simoa biomarkers, APEX‐Aβ42 showed significantly higher correlations with amyloid PET retention values and excellent diagnostic performance (sensitivity=100%, specificity=93.3%, AUC=0.995). When utilized for clinical trial recruitment, our simulation showed that pre‐screening with blood biomarkers followed by a confirmatory amyloid PET imaging would roughly half the cost (56.8% reduction for APEX‐Aβ42 and 48.6% for Simoa‐Aβ42/Aβ40) as compared to the situation where only PET imaging is used. Moreover, with a 100% sensitivity; APEX‐Aβ42 pre‐screening does not increase the required number of initial participants. Conclusions: With its high diagnostic performance, APEX is an ideal candidate for Aβ+ subject identification, monitoring, primary care screening, and could efficiently enrich clinical trials with Aβ+ participants while halving recruitment costs

    Graft healing in anterior cruciate ligament reconstruction

    Get PDF
    Successful anterior cruciate ligament reconstruction with a tendon graft necessitates solid healing of the tendon graft in the bone tunnel. Improvement of graft healing to bone is crucial for facilitating an early and aggressive rehabilitation and ensuring rapid return to pre-injury levels activity. Tendon graft healing in a bone tunnel requires bone ingrowth into the tendon. Indirect Sharpey fiber formation and direct fibrocartilage fixation confer different anchorage strength and interface properties at the tendon-bone interface. For enhancing tendon graft-to-bone healing, we introduce a strategy that includes the use of periosteum, hydrogel supplemented with periosteal progenitor cells and bone morphogenetic protein-2, and a periosteal progenitor cell sheet. Future studies include the use of cytokines, gene therapy, stem cells, platelet-rich plasma, and mechanical stress for tendon-to-bone healing. These strategies are currently under investigation, and will be applied in the clinical setting in the near future
    corecore