37,844 research outputs found
A model of rotating hotspots for 3:2 frequency ratio of HFQPOs in black hole X-ray binaries
We propose a model to explain a puzzling 3:2 frequency ratio of high
frequency quasi-periodic oscillations (HFQPOs) in black hole (BH) X-ray
binaries, GRO J1655-40, GRS 1915+105 and XTE J1550-564. In our model a
non-axisymmetric magnetic coupling (MC) of a rotating black hole (BH) with its
surrounding accretion disc coexists with the Blandford-Znajek (BZ) process. The
upper frequency is fitted by a rotating hotspot near the inner edge of the
disc, which is produced by the energy transferred from the BH to the disc, and
the lower frequency is fitted by another rotating hotspot somewhere away from
the inner edge of the disc, which arises from the screw instability of the
magnetic field on the disc. It turns out that the 3:2 frequency ratio of HFQPOs
in these X-ray binaries could be well fitted to the observational data with a
much narrower range of the BH spin. In addition, the spectral properties of
HFQPOs are discussed. The correlation of HFQPOs with jets from microquasars is
contained naturally in our model.Comment: 8 pages, 4 figures. accepted by MNRA
Study of and decays
We study the charmless two-body
and three-body decays. We obtain to agree with the
recent LHCb measurement. However, we find that is unable to explain the
LHCb observation of , which implies the possibility for other
contributions, such as that from the resonant decay with as a higher-wave baryon state. For
, we show that ,
which are consistent with the current data of , respectively. Our results also support the relation of ,
given by the previous study.Comment: 8 pages, 1 figure, revised version accepted by EPJ
Recommended from our members
A review of microgrid development in the United States – A decade of progress on policies, demonstrations, controls, and software tools
Microgrids have become increasingly popular in the United States. Supported by favorable federal and local policies, microgrid projects can provide greater energy stability and resilience within a project site or community. This paper reviews major federal, state, and utility-level policies driving microgrid development in the United States. Representative U.S. demonstration projects are selected and their technical characteristics and non-technical features are introduced. The paper discusses trends in the technology development of microgrid systems as well as microgrid control methods and interactions within the electricity market. Software tools for microgrid design, planning, and performance analysis are illustrated with each tool's core capability. Finally, the paper summarizes the successes and lessons learned during the recent expansion of the U.S. microgrid industry that may serve as a reference for other countries developing their own microgrid industries
Tensor coupling effects on spin symmetry in anti-Lambda spectrum of hypernuclei
The effects of -tensor coupling on the spin
symmetry of spectra in -nucleus systems have
been studied with the relativistic mean-field theory. Taking
C+ as an example, it is found that the tensor coupling
enlarges the spin-orbit splittings of by an order of magnitude
although its effects on the wave functions of are negligible.
Similar conclusions has been observed in -nucleus of different
mass regions, including O+, Ca+ and
Pb+. It indicates that the spin symmetry in
anti-lambda-nucleus systems is still good irrespective of the tensor coupling.Comment: 12 pages, 3 figures
- …