8,859 research outputs found
Field-induced confinement in (TMTSF)2ClO4 under accurately aligned magnetic fields
We present transport measurements along the least conducting c direction of
the organic superconductor (TMTSF)2ClO4, performed under an accurately aligned
magnetic field in the low temperature regime. The experimental results reveal a
two-dimensional confinement of the carriers in the (a,b) planes which is
governed by the magnetic field component along the b' direction. This 2-D
confinement is accompanied by a metal-insulator transition for the c axis
resistivity. These data are supported by a quantum mechanical calculation of
the transverse transport taking into account in self consistent treatment the
effect of the field on the interplane Green function and on the intraplane
scattering time
Multiple Stellar Populations in the Globular Cluster omega Centauri as Tracers of a Merger Event
The discovery of the Sagittarius dwarf galaxy, which is being tidally
disrupted by and merging with the Milky Way, supports the view that the halo of
the Galaxy has been built up at least partially by the accretion of similar
dwarf systems. The Sagittarius dwarf contains several distinct populations of
stars, and includes M54 as its nucleus, which is the second most massive
globular cluster associated with the Milky Way. The most massive globular
cluster is omega Centauri, and here we report that omega Centauri also has
several distinct stellar populations, as traced by red-giant-branch stars. The
most metal-rich red-giant-branch stars are about 2 Gyr younger than the
dominant metal-poor component, indicating that omega Centauri was enriched over
this timescale. The presence of more than one epoch of star formation in a
globular cluster is quite surprising, and suggests that omega Centauri was once
part of a more massive system that merged with the Milky Way, as the
Sagittarius dwarf galaxy is in the process of doing now. Mergers probably were
much more frequent in the early history of the Galaxy and omega Centauri
appears to be a relict of this era.Comment: 7 pages, 3 figures, Latex+nature.sty (included), To appear in
November 4th issue of Natur
Contrast-enhanced microCT evaluation of degeneration following partial and full width injuries to the mouse lumbar intervertebral disc
A targeted injury to the mouse intervertebral disc (IVD) is often used to recapitulate the degenerative cascade of the human pathology. Since injuries can vary in magnitude and localization, it is critical to examine the effects of different injuries on IVD degeneration. We thus evaluated the degenerative progression resulting from either a partial- or full-width injury to the mouse lumbar IVD using contrast-enhanced micro-computed tomography and histological analyses. A lateral-retroperitoneal surgical approach was used to access the lumbar IVD, and the injuries to the IVD were produced by either incising one side of the annulus fibrosus or puncturing both sides of the annulus fibrosus. Female C57BL/6J mice of 3-4 months age were used in this study. They were divided into three groups to undergo partial-width, full-width, or sham injuries. The L5/6 and L6/S1 lumbar IVDs were surgically exposed, and then the L6/S1 IVDs were injured using either a surgical scalpel (partial-width) or a 33G needle (full-width), with the L5/6 serving as an internal control. These animals recovered and then euthanized at either 2-, 4-, or 8-weeks after surgery for evaluation. The IVDs were assessed for degeneration using contrast-enhanced microCT (CEµCT) and histological analysis. The high-resolution 3D CEµCT evaluation of the IVD confirmed that the respective injuries were localized within one side of the annulus fibrosus or spanned the full width of the IVD. The full-width injury caused significant deteriorations in the nucleus pulposus, annulus fibrous and at the interfaces after 2 weeks, which was sustained through the 8 weeks, while the partial width injury caused localized disruptions that remained limited to the annulus fibrosus. The use of CEµCT revealed distinct IVD degeneration profiles resulting from partial- and full-width injuries. The partial width injury may serve as an alternative model for IVD degeneration resulting from localized annulus fibrosus injuries
The states of W-class as shared resources for perfect teleportation and superdense coding
As we know, the states of triqubit systems have two important classes:
GHZ-class and W-class.
In this paper, the states of W-class are considered for teleportation and
superdense coding, and are generalized to multi-particle systems. First we
describe two transformations of the shared resources for teleportation and
superdense coding, which allow many new protocols from some known ones for
that. As an application of these transformations, we obtain a sufficient and
necessary condition for a state of W-class being suitable for perfect
teleportation and superdense coding. As another application, we find that state
can be used to
transmit three classical bits by sending two qubits, which was considered to be
impossible by P. Agrawal and A. Pati [Phys. Rev. A to be published]. We
generalize the states of W-class to multi-qubit systems and multi-particle
systems with higher dimension. We propose two protocols for teleportation and
superdense coding by using W-states of multi-qubit systems that generalize the
protocols by using proposed by P. Agrawal and A. Pati. We obtain an
optimal way to partition some W-states of multi-qubit systems into two
subsystems, such that the entanglement between them achieves maximum value.Comment: 10 pages, critical comments and suggestions are welcom
Cross-talk compensation of hyperfine control in donor qubit architectures
We theoretically investigate cross-talk in hyperfine gate control of
donor-qubit quantum computer architectures, in particular the Kane proposal. By
numerically solving the Poisson and Schr\"{o}dinger equations for the gated
donor system, we calculate the change in hyperfine coupling and thus the error
in spin-rotation for the donor nuclear-electron spin system, as the gate-donor
distance is varied. We thus determine the effect of cross-talk - the
inadvertent effect on non-target neighbouring qubits - which occurs due to
closeness of the control gates (20-30nm). The use of compensation protocols is
investigated, whereby the extent of crosstalk is limited by the application of
compensation bias to a series of gates. In light of these factors the
architectural implications are then considered.Comment: 15 pages, 22 figures, submitted to Nanotechnolog
A Compositional Semantics for Stochastic Reo Connectors
In this paper we present a compositional semantics for the channel-based coordination language Reo which enables the analysis of quality of service (QoS) properties of service compositions. For this purpose, we annotate Reo channels
with stochastic delay rates and explicitly model data-arrival rates at the boundary of a connector, to capture its interaction with the services that comprise its environment. We propose Stochastic Reo automata as an extension of Reo automata, in order to compositionally derive a QoS-aware semantics for Reo. We further present a translation of Stochastic Reo automata to Continuous-Time Markov Chains (CTMCs). This translation enables us to use
third-party CTMC verification tools to do an end-to-end performance analysis of service compositions. As a case study, we are currentl
Optical study on doped polyaniline composite films
Localization driven by disorder has a strong influence on the conducting
property of conducting polymer. A class of authors hold the opinion that
disorder in the material is homogeneous and conducting polymer is disordered
metal close to Anderson-Mott Metal-Insulator transition, while others treat the
disorder as inhomogeneous and have the conclusion that conducting polymer is a
composite of ordered metallic regions and disordered insulating regions. The
morphology of conducting polymers is an important factor that have influence on
the type and extent of disorder. Different protonic acids used as dopants and
moisture have affection on polymer chain arrangement and interchain
interactions. A PANI-CSA film, two PANI-CSA/PANI-DBSA composite films with
different dopants ratio, and one of the composite films with different moisture
content are studied. Absolute reflectivity measurements are performed on the
films. Optical conductivity and the real part of dielectric function are
calculated by Kramers-Kronig(KK) relations. and
derivate from simple Drude model in low frequency range
and tendencies of the three sample are different and non-monotonic. The
Localization Modified Drude model(LMD) in the framework of Anderson-Mott theory
can not give a good fit to the experimental data. By introducing a distribution
of relaxation time into LMD, reasonable fits for all three samples are
obtained. This result supports the inhomogeneous picture.Comment: 6 figures, 7 page
Generation of Three-Qubit Entangled W-State by Nonlinear Optical State Truncation
We propose an alternative scheme to generate W state via optical state
truncation using quantum scissors. In particular, these states may be generated
through three-mode optical state truncation in a Kerr nonlinear coupler. The
more general three-qubit state may be also produced if the system is driven by
external classical fields.Comment: 7 pages, 2 figur
Modeling, Testing and Executing Reo Connectors with the Eclipse Coordination Tools
We present in this paper the Eclipse Coordination Tools (ECT), a set of visual tools for modeling, testing
and executing Reo connector in the Eclipse development environment
- …