47,321 research outputs found

    A More Precise Extraction of |V_{cb}| in HQEFT of QCD

    Full text link
    The more precise extraction for the CKM matrix element |V_{cb}| in the heavy quark effective field theory (HQEFT) of QCD is studied from both exclusive and inclusive semileptonic B decays. The values of relevant nonperturbative parameters up to order 1/m^2_Q are estimated consistently in HQEFT of QCD. Using the most recent experimental data for B decay rates, |V_{cb}| is updated to be |V_{cb}| = 0.0395 \pm 0.0011_{exp} \pm 0.0019_{th} from B\to D^{\ast} l \nu decay and |V_{cb}| = 0.0434 \pm 0.0041_{exp} \pm 0.0020_{th} from B\to D l \nu decay as well as |V_{cb}| = 0.0394 \pm 0.0010_{exp} \pm 0.0014_{th} from inclusive B\to X_c l \nu decay.Comment: 7 pages, revtex, 4 figure

    Two-Dimensional Inversion Asymmetric Topological Insulators in Functionalized III-Bi Bilayers

    Full text link
    The search for inversion asymmetric topological insulators (IATIs) persists as an effect for realizing new topological phenomena. However, so for only a few IATIs have been discovered and there is no IATI exhibiting a large band gap exceeding 0.6 eV. Using first-principles calculations, we predict a series of new IATIs in saturated Group III-Bi bilayers. We show that all these IATIs preserve extraordinary large bulk band gaps which are well above room-temperature, allowing for viable applications in room-temperature spintronic devices. More importantly, most of these systems display large bulk band gaps that far exceed 0.6 eV and, part of them even are up to ~1 eV, which are larger than any IATIs ever reported. The nontrivial topological situation in these systems is confirmed by the identified band inversion of the band structures and an explicit demonstration of the topological edge states. Interestingly, the nontrivial band order characteristics are intrinsic to most of these materials and are not subject to spin-orbit coupling. Owning to their asymmetric structures, remarkable Rashba spin splitting is produced in both the valence and conduction bands of these systems. These predictions strongly revive these new systems as excellent candidates for IATI-based novel applications.Comment: 17 pages,5figure

    YBCO-buffered NdBCO film with higher thermal stability in seeding REBCO Growth

    Full text link
    In this work, we report a strengthened superheating effect caused by a buffering YBa2Cu3Oy (Y123 or YBCO) layer in the Nd1+xBa2-xCu3O7-y (Nd123 or NdBCO) thin film with MgO substrate (i.e., NdBCO/YBCO/MgO thin film). In the cold-seeding melt-textured (MT) growth, the NdBCO/YBCO/MgO film presented an even higher superheating level, about 20 {\deg}C higher than that of non-buffered NdBCO film (i.e., NdBCO/MgO film). Using this NdBCO/YBCO/MgO film as seeds and undergoing a maximum processing temperature (Tmax) up to 1120 {\deg}C, we succeeded in growing various RE1+xBa2-xCu3O7-y (REBCO, RE=rare elements) bulk superconductors, including Gd1+xBa2-xCu3O7-y (GdBCO), Sm1+xBa2-xCu3O7-y (SmBCO) and NdBCO that have high peritectic temperatures (Tp). The pole figure (X-Ray \phi-scan) measurement reveals that the NdBCO/YBCO/MgO film has better in-plane alignment than the NdBCO/MgO film, indicating that the induced intermediate layer improves the crystallinity of the NdBCO film, which could be the main origin of the enhanced thermal stability. In short, possessing higher thermal stability and enduring a higher Tmax in the MT process, the NdBCO/YBCO/MgO film is beneficial to the growth of bulk superconductors in two aspects: (1) broad application for high-Tp REBCO materials; (2) effective suppression against heterogeneous nucleation, which is of great assistance in growing large and high-performance REBCO crystals.Comment: 9 pages, 4 figure

    Lifetime Difference and Endpoint effect in the Inclusive Bottom Hadron Decays

    Full text link
    The lifetime differences of bottom hadrons are known to be properly explained within the framework of heavy quark effective field theory(HQEFT) of QCD via the inverse expansion of the dressed heavy quark mass. In general, the spectrum around the endpoint region is not well behaved due to the invalidity of 1/mQ1/m_Q expansion near the endpoint. The curve fitting method is adopted to treat the endpoint behavior. It turns out that the endpoint effects are truly small and the explanation on the lifetime differences in the HQEFT of QCD is then well justified. The inclusion of the endpoint effects makes the prediction on the lifetime differences and the extraction on the CKM matrix element ∣Vcb∣|V_{cb}| more reliable.Comment: 11 pages, Revtex, 10 figures, 6 tables, published versio
    • …
    corecore