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Abstract In the present study, viscous fingering phenomenon, which occurs when a less viscous fluid (e.g.
supercritical carbon dioxide) is injected into ssmplified porous media to displace a more viscous fluid (e.g.
crude oil), is investigated by a mesoscopic approach-the lattice Boltzmann method (LBM). Due to its
convenience in dealing with complex fluids of different viscosities, the pseudo-potential model is employed
to study the effects of the capillary number, Bond number and viscosity ratio between the displaced fluids
and displacing fluid; as such effects reflect the competition of viscous force and surface tension and gravity
forces during viscous fingering. The numerical procedure is validated against a series of droplet tests, in
which surface tension can be determined. By changing the injecting velocity of the displacing fluid and
gravitational acceleration, the displacement processes under conditions of different capillary number and
Bond number are investigated. The finger pattern is presented in this paper. The effects of capillary number,
Bond number and viscosity ratio are discussed in detail. The ability and suitability of the lattice Boltzmann
method for simulating multi-component fluids displacement in porous media are proved in our work.
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1. Introduction

Fluid flow in porous media is of great
interest in many industrial applications such as
oil recovery, geological sequestration of
carbon dioxide, imbibition and underground
pollutant remedy application. In the ail
industry, gas injection is the most commonly
used approach to enhance oil recovery.
However, when the viscosity of residual oil is
higher than that of the injected gas, the
displacement may become unstable and result
in the onset of viscous fingering, which is
recognised as a serious problem because its
early appearance can lead to poor recovery
efficient.

In recent years, the LBM has achieved
rapid development and served as an alternative
and powerful tool for numerical modelling of
the fluid dynamics. Due to its kinetic nature
and easy implementation in complex geometry
by using bounce-back boundary condition, it
has been widely used to study transport
phenomena in porous media (van Kats and
Egberts 1999; Grosfils et al. 2004; Yiotis et al.

2007; Huang et a. 2008). As for immiscible
fluid displacement process in porous media,
the behaviour of the interface front yields
complicated patterns which reflect intricate
interplay between viscous force, capillary
force and gravity. In their research, the effects
of capillary number or viscosity ratio on the
immiscible fluid behaviour in porous media
have been investigated in detail; however,
most of them ignored the effect of gravity on
viscous fingering phenomenon. Even if the
gravity was mentioned, but no attention has
been paid on this factor.

In this paper, lattice Boltzmann method is
employed to study the effects of capillary
number, Bond number, and viscosity ratio
between the displaced fluid and the displacing
fluid on the viscous fingering phenomenon of
immiscible fluid displacement process in
simplified porous media with consideration of
gravity.

2. Theory and Model
In the LBM, the fluid is moddled as a
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collection of discrete sets of particles colliding
at aregular lattice and moving from site to site
along the edges of the lattice while the mass
and momentum of the fluid are conserved,
respectively. Several models are available to
simulate multiphase or multi-component fluid
flow behaviour. The first one, introduced by
Gunstensen and Rothman for immiscible
fluids (Gunstensen and Rothman 1991), is
known as chromodynamics model, in which
the fluid is colored either red or blue and a
specia collision rule is introduced to account
for the properties of immiscible fluids. Shan et
al. developed a new model, known as pseudo-
potential model, by introducing pseudo-
potential function to achieve phase separation
automatically (Shan and Chen 1993; Shan and
Doolen 1995). Swift et a. proposed the free
energy model that uses a non ideal pressure
tensor and external chemica potentia instead
of additional collision operator, so that one can
obtain an isothermal model of phase separation
which correctly describes bulk and interfacia
dynamics a low temperatures (Swift and
Yeomans 1995; Swift et al. 1996). The other
models include the one proposed by Luo
(1998, 2000) by discretizing Enskog equation
in both phase space and time space, and the
one developed by He et a. (He, Chen and
Zhang 1999) which introduces a index
function to indicate the evolution of the
interface.

All of the above models have their own
advantages and disadvantages. How to choose
asuitable model depends on the research focus
and the application of interest. In the present
study, pseudo-potential D2Q9 model is chosen
dueto its ease to deal with fluids with different
viscosities and its convenience to handle
complex interaction.

In pseudo-potential D2Q9 model, lattice
BGK model is extended to multi-component
by using different sets of particle distribution
functions (PDFs) for each fluid component.
The evolution of PDFs is based on Eq. (1),
given as

fo(x+e,8,t+38,)=f7(x1)

i) - reopen)]
T

2nd Micro and Nano Flows Conference
West London, UK, 1-2 September 2009

where f7(x,t) is the particle distribution
function of the oth fluid component at
position x a time t; f°®*(x,t) is the
corresponding equilibrium particle distribution
function; e, is the particle velocity in the
ath direction, given as

e, =(0,0),for =0,

e, = (cosd,,sné, )c

with 6 =(a-Dz/2 for a=1-4,

e, =+/2(cosb,,sinb, )

with 0, = (e« -5 /2+ /4 for a =5-8;

the superscript o denotes different fluid
components by specifying o =12, and t°
is the relaxation time of the oth fluid
component depending on v° =(r" -1 2)5t /3.
The density and velocity of each fluid
component can be obtained by

p, =3 12 @
u, =23 tre, 3
Ps o

The equilibrium particle distribution
functions of each fluid component are of the
forms as follows,
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where ¢, =c/+/3 is defined as the lattice
speed of sound, w, is the weighting factor,
with w, =4/9 (@ =0) , w, =29 (e =1-4)
and w, =1/36 (¢« =5-8).

The fluid-fluid interaction and gravitational
force are incorporated in Eq. (4) by modifying
usl as

ul=u'+—=° (5)




where F_ isthetotal force acting on the oth

fluid component including the fluid-fluid
interaction, and external force such as
gravitational force, and u’ is the common
averaged velocity of all the fluid components
in the absence of any additional forces, which
is defined as (Shan and Doolen 1996)

/ 3 Pe ©)

If only the interaction between the nearest
neighbours and the next-nearest neighbours is
taken into account, the fluid-fluid interaction is
expressed as ( (Shan and Chen 1993; Shan and
Doolen 1995; Kang et al. 2002)

2
w=r
o=
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where w_(x) is named “effective density”

which is defined as a function of local particle
density and assumed to be the local density
p, inthisstudy; x'=x+e, istheneighbour
lattice of x; and G, is the coefficient
which controls the fluid-fluid interaction
strength, given as

G, =G for |e,|=1,

G,, =G/4 for |e,|=+2

and G_ =0 for otherwise.

Gravitationa force can be simply
introduced as
Fy =p.9 (8

where g isgravitational acceleration.
In the D2Q9 model, the pressure p of the
whole fluid is given as (Shan et a. 1996).

"‘Zpa += Gwc,(x)v() 9)

The viscosity of the fluid mixture is defined as

:(ZX{;"—]/ZJ/B, where x is the
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density fraction of the oth component.

3. Numerical Results and Discussion

It is well known that the flow behaviour of
immiscible fluids in porous media is dictated
by the competition of gravity, capillary force
and viscous force. The gravity results in the
interface of two immiscible fluids migration in
the gravitational field. Viscous force and
capillary force affect the movement of the
interface. In addition, when the viscosities of
the two fluids are dramatically different, the
viscosity contrast will lead to the appearance
of viscous finger. Dimensionless numbers are
introduced to describe their influence. One is
the capillary number, which gives the ratio of
viscous force to capillary force. The genera
expression is given as Ca=vpV/y , where v
is kinematic viscosity of the fluid; p isfluid
density; v is velocity; and y is surface
tension. The ratio of gravity to capillary force
iIS expressed by the Bond number,
Bo=pgl?/y , where L is characteristic
length (e.g. average pore radius). Another
impact factor due to viscosity contrast is
expressed by the viscosity ratio of displaced
fluid to displacing fluid.

3.1. Simulation setup

Porous media is represented by a lattice
system of 280x280 comprising 25 solid circles
with a diameter of 20 lattice lengths in a
staggered manner, as shown in Fig. 1. The
porosity of porous mediais ¢ =0.9. The black
solid circles indicate the solid material in
porous media, and the white regions serve as
the path for the fluid to pass through. Line AB
is located on the left hand side of the domain,
with OA=10.

Initially, a x> A, the research domain is
filled with fluid 2 (displaced fluid)at rest,
while, a 0< x< A, the region is occupied by
flud 1 (displacing fluid) with an initial
velocity u, .The PDFs of fluid 1 and fluid 2
are specified with the equilibrium PDFs with
zero velocity for fluid 2 and u, for fluid 1,

respectively. Periodic boundary condition is
applied in upper and lower boundaries. With



the simulation time marching, a constant
velocity boundary scheme suggested by Zou
(Zou and He 1997) is imposed on the inlet.
Regarding the outlet, a zero derivative velocity
condition is adopted. Bounce-back boundary
scheme is adopted when the fluid encounters
the solid materials. All variables are in lattice
units, which can be related to physical units by
dimensionless conversion.
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Fig. 1. Schematic diagram of simplified porous media

3.2. Evaluation of surfacetension

Laplaces lav  Ap=y/R gives the
relationship between the radii and pressure
difference. In order to determine surface
tension, a series of droplet tests with various
radii is performed in a 100 X 100 lattice
system. No externa force, such as gravity, is
applied. Periodic boundary condition is
imposed on each boundary of the domain
without taking wettability into account.
Initially, different sizes of droplet are placed in
the center of the lattice system, respectively,
and then after a while, steady droplets of
different radii can be obtained. The pressure
inside and outside of the droplet is measured at
the lattice that is far way from the interface,
because the value of pressure may change
sharply near the interface. The radius of the
circle, on which the density of fluid 1 and fluid
2 are identical, is chosen as the radius of
droplet at steady state. Regarding immiscible
fluids with different viscosity ratios, four cases
are studied (M =1,2,34). After the pressure
difference and droplet radii are measured,
surface tension can be determined. The
relationships of Ap and 1/R are plotted in

Fig. 2. The solid discrete points represent
| attice simulation results, and the line indicates
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linear regression results. The slopes of the line
determine surface tension, which are tabulated
in Table I, together with the intercept and the
coefficient of determination R?. As shown in
Fig. 2, it is clear that the pressure difference
inside and outside of the droplet is indeed
proportional to the reciprocal of the droplet
radium for all the cases.
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Fig. 2. Relationships between AP and 1/R

Table 1: Surface tensions for fluids with different
viscosity ratios

M tsgqr;?gr? Intercept R?

1 0.1810 0.0004 0.9967
2 0.2296 0.0213 0.9959
3 0.2903 0.0289 0.9990
4 0.3666 0.0341 0.9982

3.3. Performance of numerical simulation

In this section, the effects of capillary
number, Bond number, viscosity ratio on the
immiscible fluid displacement process in
simplified porous media are discussed. In this
study, for simplicity, the density of fluid 1 and
fluid 2 are unity, respectively, and the surface
wettability isignored.

3.3.1. Influence of capillary number

In order to investigate the effect of
capillary number (Ca) on the fluid behaviour,
several simulations with different capillary
numbers are carried out by changing the initial
velocity of the displacing fluid. Neither gravity
nor viscosity ratio is considered. The interface
between two immiscible fluids is defined as
the region where the particle density of each



fluid component is identical. Three cases are
studied with Ca=0.0088, Ca=0.0265 and
Ca=0.0442.

Figure 3 shows the interface positions with
different capillary numbers. The grey circles
represent the solid materials in porous media,
and the white region and black region indicate
the presence of displacing fluid and displaced
fluid, respectively. It is simulated that at the
early stage of displacement process, the
interface moves evenly for all cases (shown on
the left hand side of Fig. 3). However, in terms
of Fig. 3(b)-Fig. 3(c), when Ca becomes
relative large, significant isolated droplets of
displaced fluid are formed either adhering to
the solid materials or in the pore region.
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Fig. 3. Theinterface at early stage of the
displacement (left hand side) and at final stage of the
displacement (right hand side) for (a) Ca = 0.0088;
(b) Ca = 0.0265; (c) Ca= 0.0442.

In fact, even in the case of Fig. 3(a), smal
droplets are found in the region adhering to the
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solid materials. As shown on the right hand
side of Fig. 3, when the interface fronts arrive
a the outlet, fingers appear for al casesin a
similar manner, but more isolated droplets of
the displaced fluid are formed adhering to the
solid material. Moreover, for Ca=0.0442
(shown in Fig. 3(c)), the previously formed
droplets in the pore region disappear.

The underlying mechanism behind the
phenomenon is that relative small capillary
number means the surface tension is dominant
over the viscous force. Consequently, the
surface tension provides a stabilizing effect at
ashort distance.

3.3.2. Influence of Bond number

It is well known that, if viscous fingering
phenomenon happens, the finger pattern is
symmetrical about the center line of research
domain along x direction in the absence of
gravity. However, when the gravity is taken
into account, the finger pattern is no longer
symmetrical. In order to study the effect of
gravitational force on the finger pattern, the
Bond number (Bo) is used to express the
interplay between gravity and surface tension.
Currently, viscosity ratio between the
displaced fluid and the displacing fluid is set
a M =3, and the initial velocity of the
displacing fluid is chosen as u, =0.03. By

changing gravitational acceleration g, which
is applied adong the negative direction of vy

axis, different Bond numbers can be obtained.
Figure 4 presents the interface positions at
final stage of the displacement process with
different Bond numbers. It is found out that for
all cases, the interface front has a tendency to
move downwards under the action of gravity.
In addition, in the case of Bo=5.58, the
finger is the most obvious. For Bo = 2.79, the
finger pattern is short and wide. In other two
cases (shown in Fig. 4(c)-Fig. 4(d)), narrow
and irregular fingers are formed, with some
droplets of the displaced fluid either adhering
to the solid materials or in the pore region.
Area sweep efficiency Se, which is the
raio of the volume being swept by the
displacing fluid to the total pore volume, is
employed to indicate displacement efficiency.



The relationship between Se and Bo is
shown in Fig. 5. When Bo is equal to 5.58, the
highest sweep efficiency is found; when Bo is
smaller than 5.58, Se decreases with Bo, and
when Bo is bhigger than 5.58, Se increases
with Bo. Additionaly, it is aso found that,
when the fingering phenomenon is the most
significant, the areal sweep efficiency is the
lowest.
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Fig. 4. Final finger patternsfor (a) Bo= 2.79; (b)
Bo=5.58; (c) Bo= 8.37; (d) Bo= 11.16.
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3.3.3. Influence of viscosity ratio

The effect of viscosity ratio on the fluid
behaviour has been analysed by performing a
series of simulations with various viscosity
ratios (M =1234) without consideration of
gravity. The initial velocity of displacing fluid
u, isfixedas0.05 for each case.
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When the interface reaches the outlet, the
final interface patterns are compared, as shown
in Fig. 6. It is modelled that for all cases,
several fingers are formed at the late stage of
the displacement. However, for M <2, some
droplets of the displaced fluid are formed
adhering to the solid materias. In addition, for
M >3, the finger patterns take on similar
appearance. The increasing of viscosity ratio
seems that it does not enhance further growth
of the finger. One of the reasons may be that at
the fixed velocity of the displacing fluid, the
momentum introduced in the system is
constant. However, more momentum is needed
to displace higher viscous fluid. In addition,
since the arrangement of solid materialsisin a
staggered manner, as a result the appearance of
the solid obstacles in the front of the

displacing fluid helps to suspend the
occurrence of fingers.
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Fig. 6. Final finger patternsfor (a) M = 1; (b) M
=2,(c)M=3; (d)M=4,

The relationship between areal sweep
efficiency Se and viscosity ratio M is plotted
in Fig. 7. It is found that areal sweep
efficiency decreases with viscosity ratio, even
if the final finger patterns are similar in the
caseof M >3.
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Fig. 7. Relationship between Se and viscosity ratio.

4. Conclusions

In this paper, the lattice Boltzmann method
was adopted to study the effects of capillary
number, Bond number, and viscosity ratio on
the flow behaviour of immiscible fluid
displacement process in simplified porous
media.

It is found that the viscous fingering
phenomenon is not obvious with the increasing
of capillary number without consideration of
gravity. However, more droplets of displaced
fluid are formed adhering to the solid materials
with capillary number. The viscous fingering
phenomenon is obvious in the presence of
gravity. Under the action of gravity, the finger
front tends to move downwards in the
direction of gravitational acceleration. The
area sweep efficiency is the lowest, when the
viscous fingering is the most significant. In
addition, it is modelled that the finger
appearance is not enhanced dramatically in
porous media which contains solid materialsin
staggered manner by increasing viscous ratio.
Nevertheless, the areal sweep efficiency
decreases with viscosity ratio.

In conclusion, the work suggests that the
LBM is a reliable approach for the simulation
of immiscible fluid displacement in porous
media.
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