2,919 research outputs found

    Optogenetic Control of TGF-β Signaling

    Get PDF
    Cells employ signaling pathways to make decisions in response to changes in their immediate environment. The Transforming Growth Factor β (TGF-β) signaling pathway plays pivotal roles in regulating many cellular processes, including cell proliferation, differentiation, and migrations. In order to manipulate and explore the dynamic behavior of TGF-β signaling at high spatiotemporal resolution, we developed an optogenetic system (the optoTGFBRs system), in which light is used to control TGF-β signaling precisely in time and space. Here, we describe about experimental details of how to build the optoTGFBRs system and utilize it to manipulate TGF-β signaling in a single cell or a cell population using microscope or LED array, respectively

    Fractional quantum Hall effect at ν=5/2\nu = 5/2: Ground states, non-Abelian quasiholes, and edge modes in a microscopic model

    Full text link
    We present a comprehensive numerical study of a microscopic model of the fractional quantum Hall system at filling fraction ν=5/2\nu = 5/2, based on the disc geometry. Our model includes Coulomb interaction and a semi-realistic confining potential. We also mix in some three-body interaction in some cases to help elucidate the physics. We obtain a phase diagram, discuss the conditions under which the ground state can be described by the Moore-Read state, and study its competition with neighboring stripe phases. We also study quasihole excitations and edge excitations in the Moore-Read--like state. From the evolution of edge spectrum, we obtain the velocities of the charge and neutral edge modes, which turn out to be very different. This separation of velocities is a source of decoherence for a non-Abelian quasihole/quasiparticle (with charge ±e/4\pm e/4) when propagating at the edge; using numbers obtained from a specific set of parameters we estimate the decoherence length to be around four microns. This sets an upper bound for the separation of the two point contacts in a double point contact interferometer, designed to detect the non-Abelian nature of such quasiparticles. We also find a state that is a potential candidate for the recently proposed anti-Pfaffian state. We find the speculated anti-Pfaffian state is favored in weak confinement (smooth edge) while the Moore-Read Pfaffian state is favored in strong confinement (sharp edge).Comment: 15 pages, 9 figures; Estimate of e/4 quasiparticle/hole coherence length when propagating along the edge modified in response to a recent revision of Ref. 25, and minor changes elsewher

    Fireball/Blastwave Model and Soft Gamma-ray Repeaters

    Full text link
    Soft gamma-ray repeaters are at determined distances and their positions are known accurately. If observed, afterglows from their soft gamma-ray bursts will provide important clues to the study of the so called "classical gamma-ray bursts". On applying the popular fireball/blastwave model of classical gamma-ray bursts to soft gamma-ray repeaters, it is found that their X-ray and optical afterglows are detectable. Monitoring of the three repeaters is solicited.Comment: Already published in 1998 in "Chinese Physics Letters", replaced with the published version. See astro-ph/0502452 for a more detailed versio

    Quantum mechanical photon-count formula derived by entangled state representation

    Full text link
    By introducing the thermo entangled state representation, we derived four new photocount distribution formulas for a given density operator of light field. It is shown that these new formulas, which is convenient to calculate the photocount, can be expressed as such integrations over Laguree-Gaussian function with characteristic function, Wigner function, Q-function, and P-function, respectively.Comment: 5 pages, no figur

    A theoretical description of a multi-source energy harvester

    Get PDF

    Revisiting the Role of TGFβ Receptor Internalization for Smad Signaling: It is Not Required in Optogenetic TGFβ Signaling Systems

    Get PDF
    Endocytosis is an important process by which many signaling receptors reach their intracellular effectors. Accumulating evidence suggests that internalized receptors play critical roles in triggering cellular signaling, including transforming growth factor β (TGFβ) signaling. Despite intensive studies on the TGFβ pathway over the last decades, the necessity of TGFβ receptor endocytosis for downstream TGFβ signaling responses is a subject of debate. In this study, mathematical modeling and synthetic biology approaches are combined to re-evaluate whether TGFβ receptor internalization is indispensable for inducing Smad signaling. It is found that optogenetic systems with plasma membrane-tethered TGFβ receptors can induce fast and sustained Smad2 activation upon light stimulations. Modeling analysis suggests that endocytosis is precluded for the membrane-anchored optogenetic TGFβ receptors. Therefore, this study provides new evidence to support that TGFβ receptor internalization is not required for Smad2 activation
    corecore