163 research outputs found

    Reliable Optical Pump Architecture for Highly Coherent Lasers Used in Space Metrology Applications

    Get PDF
    The design and initial demonstration of a laser pump module (LPM) incorporating single-mode, grating-stabilized 808-nm diode lasers and a low-loss, high-port-count optical combiner are completed. The purpose of the developed LPM is to reliably pump an Nd:YAG crystal in the laser head (LH), which serves as the optical metrology source for SIMLite mission. Using the narrow-linewidth, single-mode laser diodes enables placement of the pump power near Nd adsorption peak, which enhances pumping efficiency. Grating stabilization allows for stable pump spectra as diode operating temperature and bias current change. The low-loss, high-port-count optical combiner enables efficient combining of tens of pumps. Overall, the module supports 5+ years of continuous operation at 2 W of pump power with reliability approaching 100 percent. The LPM consists of a laser diode farm (LDF) and a pump beam combiner (PBC). An array of 807- to 808-nm fiber-pigtailed laser diodes makes up the LDF. A Bragg grating in each 5- m core single-mode (SM) fiber pigtail acts to stabilize the lasing spectra over a range of diode operating conditions. These commercially available single-mode laser diodes can deliver up to 150 mW of optical power. The outputs from the multiple pumps in the LDF are routed to the PBC, which is a 37-input by 1-output all-fiber device. The input ports consist of 5- m core SM fiber, while the output port consists of 105- m core, 0.15 NA (numerical aperture) multi-mode (MM) fiber. The combiner is fabricated by fusing the 37 input fibers while simultaneously tapering the fused region. At the completion of this process, the MM fiber is spliced to the end of the adiabatic taper, and, for protection, the combiner is sheathed by a capillary tube. A compact and robust metal housing was designed and fabricated to protect the PBC during space deployment

    Screening and identification of seed-specific genes using digital differential display tools combined with microarray data from common wheat

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Wheat is one of the most important cereal crops for human beings, with seeds being the tissue of highly economic value. Various morphogenetic and metabolic processes are exclusively associated with seed maturation. The goal of this study was to screen and identify genes specifically expressed in the developing seed of wheat with an integrative utilization of digital differential display (DDD) and available online microarray databases.</p> <p>Results</p> <p>A total of 201 unigenes were identified as the results of DDD screening and microarray database searching. The expressions of 6 of these were shown to be seed-specific by qRT-PCR analysis. Further GO enrichment analysis indicated that seed-specific genes were mainly associated with defense response, response to stress, multi-organism process, pathogenesis, extracellular region, nutrient reservoir activity, enzyme inhibitor activity, antioxidant activity and oxidoreductase activity. A comparison of this set of genes with the rice (<it>Oryza sativa</it>) genome was also performed and approximately three-fifths of them have rice counterparts. Between the counterparts, around 63% showed similar expression patterns according to the microarray data.</p> <p>Conclusions</p> <p>In conclusion, the DDD screening combined with microarray data analysis is an effective strategy for the identification of seed-specific expressed genes in wheat. These seed-specific genes screened during this study will provide valuable information for further studies about the functions of these genes in wheat.</p

    Messenger RNA Oxidation Occurs Early in Disease Pathogenesis and Promotes Motor Neuron Degeneration in ALS

    Get PDF
    BACKGROUND: Accumulating evidence indicates that RNA oxidation is involved in a wide variety of neurological diseases and may be associated with neuronal deterioration during the process of neurodegeneration. However, previous studies were done in postmortem tissues or cultured neurons. Here, we used transgenic mice to demonstrate the role of RNA oxidation in the process of neurodegeneration. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrated that messenger RNA (mRNA) oxidation is a common feature in amyotrophic lateral sclerosis (ALS) patients as well as in many different transgenic mice expressing familial ALS-linked mutant copper-zinc superoxide dismutase (SOD1). In mutant SOD1 mice, increased mRNA oxidation primarily occurs in the motor neurons and oligodendrocytes of the spinal cord at an early, pre-symptomatic stage. Identification of oxidized mRNA species revealed that some species are more vulnerable to oxidative damage, and importantly, many oxidized mRNA species have been implicated in the pathogenesis of ALS. Oxidative modification of mRNA causes reduced protein expression. Reduced mRNA oxidation by vitamin E restores protein expression and partially protects motor neurons. CONCLUSION/SIGNIFICANCE: These findings suggest that mRNA oxidation is an early event associated with motor neuron deterioration in ALS, and may be also a common early event preceding neuron degeneration in other neurological diseases
    corecore