274 research outputs found

    El mito del regreso: Ítacas y Ulises contemporáneos

    Get PDF

    Electron excitation and energy transfer rates for H2O in the upper atmosphere

    Get PDF
    Recent measurements of the cross sections for electronic state excitations in H2O have made it possible to calculate rates applicable to these excitation processes. We thus present here calculations of electron energy transfer rates for electronic and vibrational state excitations in H2O, as well as rates for excitation of some of these states by atmospheric thermal and auroral secondary electrons. The calculation of these latter rates is an important first step towards our aim of including water into a statistical equilibrium model of the atmosphere under auroral conditions.Comment: 15 pages, 8 figure

    Clonal selection in the human Vδ1 T cell repertoire indicates γδ TCR-dependent adaptive immune surveillance

    Get PDF
    γδ T cells are considered to be innate-like lymphocytes that respond rapidly to stress without clonal selection and differentiation. Here we use next-generation sequencing to probe how this paradigm relates to human Vδ2neg T cells, implicated in responses to viral infection and cancer. The prevalent Vδ1 T cell receptor (TCR) repertoire is private and initially unfocused in cord blood, typically becoming strongly focused on a few high-frequency clonotypes by adulthood. Clonal expansions have differentiated from a naive to effector phenotype associated with CD27 downregulation, retaining proliferative capacity and TCR sensitivity, displaying increased cytotoxic markers and altered homing capabilities, and remaining relatively stable over time. Contrastingly, Vδ2+ T cells express semi-invariant TCRs, which are present at birth and shared between individuals. Human Vδ1+ T cells have therefore evolved a distinct biology from the Vδ2+ subset, involving a central, personalized role for the γδ TCR in directing a highly adaptive yet unconventional form of immune surveillance

    Modeling of Intermediate Structures and Chain Conformation in Silica-Latex Nanocomposites Observed by SANS During Annealing

    Full text link
    The evolution of the polymer structure during nanocomposite formation and annealing of silica-latex nanocomposites is studied using contrast-variation small angle neutron scattering. The experimental system is made of silica nanoparticles (Rsi \approx 8 nm) and a mixture of purpose-synthesized hydrogenated and deuterated nanolatex (Rlatex \approx 12.5 nm). The progressive disappearance of the latex beads by chain interdiffusion and release in the nanocomposites is analyzed quantitatively with a model for the scattered intensity of hairy latex beads and an RPA description of the free chains. In silica-free matrices and nanocomposites of low silica content (7%v), the annealing procedure over weeks at up to Tg + 85 K results in a molecular dispersion of chains, the radius of gyration of which is reported. At higher silica content (20%v), chain interdiffusion seems to be slowed down on time-scales of weeks, reaching a molecular dispersion only at the strongest annealing. Chain radii of gyration are found to be unaffected by the presence of the silica filler
    corecore