85 research outputs found

    Detection of the interfacial exchange field at a ferromagnetic insulator-nonmagnetic metal interface with pure spin currents

    Full text link
    At the interface between a nonmagnetic metal (NM) and a ferromagnetic insulator (FI) spin current can interact with the magnetization, leading to a modulation of the spin current. The interfacial exchange field at these FI-NM interfaces can be probed by placing the interface in contact with the spin transport channel of a lateral spin valve (LSV) device and observing additional spin relaxation processes. We study interfacial exchange field in lateral spin valve devices where Cu spin transport channel is in proximity with ferromagnetic insulator EuS (EuS-LSV) and yttrium iron garnet Y3_3Fe5_5O12_{12} (YIG-LSV). The spin signals were compared with reference lateral spin valve devices fabricated on nonmagnetic Si/SiO2_2 substrate with MgO or AlOx_x capping. The nonlocal spin valve signal is about 4 and 6 times lower in the EuS-LSV and YIG-LSV, respectively. The suppression in the spin signal has been attributed to enhanced surface spin-flip probability at the Cu-EuS (or Cu-YIG) interface due to interfacial spin-orbit field. Besides spin signal suppression we also found widely observed low temperature peak in the spin signal at TT \sim30 K is shifted to higher temperature in the case of devices in contact with EuS or YIG. Temperature dependence of spin signal for different injector-detector distances reveal fluctuating exchange field at these interfaces cause additional spin decoherence which limit spin relaxation time in addition to conventional sources of spin relaxation. Our results show that temperature dependent measurement with pure spin current can be used to probe interfacial exchange field at the ferromagnetic insulator-nonmagnetic metal interface.Comment: 10 pages, 3 figures, accepted in Physical Review

    Recurrent advanced colonic cancer occurring 11 years after initial endoscopic piecemeal resection: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The high frequency of local recurrence occurring after endoscopic piecemeal resection (EPMR) for large colorectal tumors is a serious problem. However, almost all of these cases of local recurrence can be detected within 1 year and cured by additional endoscopic resection. We report a rare case of recurrent advanced colonic cancer diagnosed 11 years after initial EPMR treatment.</p> <p>Case presentation</p> <p>A 65-year-old male was diagnosed with a sigmoid colon lesion following a routine health check-up. Total colonoscopy revealed a 12 mm type 0-Is lesion in the sigmoid colon, which was diagnosed as an adenoma or intramucosal cancer and treated by EPMR in 1996. The post-resection defect was closed completely using metallic endoclips to avoid delayed bleeding. In 2007, at the third follow up, colonoscopy revealed a 20 mm submucosal tumor (SMT) like recurrence at the site of the previous EPMR. The recurrent lesion was treated by laparoscopic assisted sigmoidectomy with lymph node dissection.</p> <p>Conclusion</p> <p>When it is difficult to evaluate the depth and margins of resected tumors following EPMR, it is important that the defect is not closed in order to avoid tumor implantation, missing residual lesions and to enable earlier detection of recurrence. It is crucial that the optimal follow-up protocol for EPMR cases is clarified, particularly how often and for how long they should be followed.</p

    Superconducting spintronics

    Get PDF
    The interaction between superconducting and spin-polarized orders has recently emerged as a major research field following a series of fundamental breakthroughs in charge transport in superconductor-ferromagnet heterodevices which promise new device functionality. Traditional studies which combine spintronics and superconductivity have mainly focused on the injection of spin-polarized quasiparticles into superconducting materials. However, a complete synergy between superconducting and magnetic orders turns out to be possible through the creation of spin-triplet Cooper pairs which are generated at carefully engineered superconductor interfaces with ferromagnetic materials. Currently, there is intense activity focused on identifying materials combinations which merge superconductivity and spintronics in order to enhance device functionality and performance. The results look promising: it has been shown, for example, that superconducting order can greatly enhance central effects in spintronics such as spin injection and magnetoresistance. Here, we review the experimental and theoretical advances in this field and provide an outlook for upcoming challenges related to the new concept of superconducting spintronics.J.L. was supported by the Research Council of Norway, Grants No. 205591 and 216700. J.W.A.R. was supported by the UK Royal Society and the Leverhulme Trust through an International Network Grant (IN-2013-033).This is the accepted manuscript. The final version is available at http://www.nature.com/nphys/journal/v11/n4/full/nphys3242.html

    Quasiparticle-mediated spin Hall effect in a superconductor

    No full text
    In some materials the competition between superconductivity and magnetism brings about a variety of unique phenomena such as the coexistence of superconductivity and magnetism in heavy-fermion superconductors or spin-triplet supercurrent in ferromagnetic Josephson junctions. Recent observations of spin–charge separation in a lateral spin valve with a superconductor evidence that these remarkable properties are applicable to spintronics, although there are still few works exploring this possibility. Here, we report the experimental observation of the quasiparticle-mediated spin Hall effect in a superconductor, NbN. This compound exhibits the inverse spin Hall (ISH) effect even below the superconducting transition temperature. Surprisingly, the ISH signal increases by more than 2,000 times compared with that in the normal state with a decrease of the injected spin current. The effect disappears when the distance between the voltage probes becomes larger than the charge imbalance length, corroborating that the huge ISH signals measured are mediated by quasiparticles.UTokyo Research掲載「超伝導体中で磁気の流れを効率良く電流に変換することに成功」 URI: http://www.u-tokyo.ac.jp/ja/utokyo-research/research-news/efficient-conversion-from-spin-currents-to-charge-currents-in-a-superconductor.htmlUTokyo Research "Efficient conversion from spin currents to charge currents in a superconductor" URI: http://www.u-tokyo.ac.jp/en/utokyo-research/research-news/efficient-conversion-from-spin-currents-to-charge-currents-in-a-superconductor.htm

    Quasiparticle-mediated spin Hall effect in a superconductor

    No full text
    In some materials the competition between superconductivity and magnetism brings about a variety of unique phenomena such as the coexistence of superconductivity and magnetism in heavy-fermion superconductors or spin-triplet supercurrent in ferromagnetic Josephson junctions. Recent observations of spin–charge separation in a lateral spin valve with a superconductor evidence that these remarkable properties are applicable to spintronics, although there are still few works exploring this possibility. Here, we report the experimental observation of the quasiparticle-mediated spin Hall effect in a superconductor, NbN. This compound exhibits the inverse spin Hall (ISH) effect even below the superconducting transition temperature. Surprisingly, the ISH signal increases by more than 2,000 times compared with that in the normal state with a decrease of the injected spin current. The effect disappears when the distance between the voltage probes becomes larger than the charge imbalance length, corroborating that the huge ISH signals measured are mediated by quasiparticles.UTokyo Research掲載「超伝導体中で磁気の流れを効率良く電流に変換することに成功」 URI: http://www.u-tokyo.ac.jp/ja/utokyo-research/research-news/efficient-conversion-from-spin-currents-to-charge-currents-in-a-superconductor.htmlUTokyo Research "Efficient conversion from spin currents to charge currents in a superconductor" URI: http://www.u-tokyo.ac.jp/en/utokyo-research/research-news/efficient-conversion-from-spin-currents-to-charge-currents-in-a-superconductor.htm
    corecore