3,183 research outputs found

    Flow Study in Relativistic Nuclear Collisions by Fourier Expansion of Azimuthal Particle Distributions

    Get PDF
    We propose a new method to study transverse flow effects in relativistic nuclear collisions by Fourier analysis of the azimuthal distribution on an event-by-event basis in relatively narrow rapidity windows. The distributions of Fourier coefficients provide direct information on the magnitude and type of flow. Directivity and two dimensional sphericity tensor, widely used to analyze flow, emerge naturally in our approach, since they correspond to the distributions of the first and second harmonic coefficients, respectively. The role of finite particle fluctuations and particle correlations is discussed.Comment: 14 pages, 3 figures included as figures.uu at the end, REVTE

    Hadronic Transition chi(c1)(1P) to eta(c) plus two pions at the Beijing Spectrometer BES and the Cornell CLEO-c

    Full text link
    Hadronic transitions of the chi(cj)(1P) states have not been studied yet. We calculate the rate of the hadronic transition chi(c1)(1P) to eta(c) plus two pions in the framework of QCD multipole expansion. We show that this process can be studied experimentally at the upgraded Beijing Spectrometer BES III and the Cornell CLEO-c.Comment: 6 pages RevTex4(two-column). Version published in Phys. Rev. D 75, 054019 (2007

    Particle decay in false vacuum

    Full text link
    We revisit the problem of decay of a metastable vacuum induced by the presence of a particle. For the bosons of the `master field' the problem is solved in any number of dimensions in terms of the spontaneous decay rate of the false vacuum, while for a fermion we find a closed expression for the decay rate in (1+1) dimensions. It is shown that in the (1+1) dimensional case an infrared problem of one-loop correction to the decay rate of a boson is resolved due to a cancellation between soft modes of the field. We also find the boson decay rate in the `sine-Gordon staircase' model in the limits of strong and weak coupling.Comment: 19 pages, 2 figure

    Large Component QCD and Theoretical Framework of Heavy Quark Effective Field Theory

    Full text link
    Based on a large component QCD derived directly from full QCD by integrating over the small components of quark fields with p<E+mQ|{\bf p}| < E + m_Q, an alternative quantization procedure is adopted to establish a basic theoretical framework of heavy quark effective field theory (HQEFT) in the sense of effective quantum field theory. The procedure concerns quantum generators of Poincare group, Hilbert and Fock space, anticommutations and velocity super-selection rule, propagator and Feynman rules, finite mass corrections, trivialization of gluon couplings and renormalization of Wilson loop. The Lorentz invariance and discrete symmetries in HQEFT are explicitly illustrated. Some new symmetries in the infinite mass limit are discussed. Weak transition matrix elements and masses of hadrons in HQEFT are well defined to display a manifest spin-flavor symmetry and 1/mQ1/m_Q corrections. A simple trace formulation approach is explicitly demonstrated by using LSZ reduction formula in HQEFT, and shown to be very useful for parameterizing the transition form factors via 1/mQ1/m_Q expansion. As the heavy quark and antiquark fields in HQEFT are treated on the same footing in a fully symmetric way, the quark-antiquark coupling terms naturally appear and play important roles for simplifying the structure of transition matrix elements, and for understanding the concept of `dressed heavy quark' - hadron duality. In the case that the `longitudinal' and `transverse' residual momenta of heavy quark are at the same order of power counting, HQEFT provides a consistent approach for systematically analyzing heavy quark expansion in terms of 1/mQ1/m_Q. Some interesting features in applications of HQEFT to heavy hadron systems are briefly outlined.Comment: 59 pages, RevTex, no figures, published versio

    B(s),D(s)π,K,η,ρ,K,ω,ϕB_{(s)},D_{(s)} \to \pi, K, \eta, \rho, K^*, \omega, \phi Transition Form Factors and Decay Rates with Extraction of the CKM parameters Vub|V_{ub}|, Vcs|V_{cs}|, Vcd|V_{cd}|

    Full text link
    A systematic calculation for the transition form factors of heavy to light mesons (B,Bs,D,Dsπ,K,η,ρ,K,ω,ϕB,B_s,D,D_s \to \pi, K, \eta, \rho, K^*, \omega, \phi) is carried out by using light-cone sum rules in the framework of heavy quark effective field theory. The heavy quark symmetry at the leading order of 1/mQ1/m_Q expansion enables us to reduce the independent wave functions and establish interesting relations among form factors. Some relations hold for the whole region of momentum transfer. The meson distribution amplitudes up to twist-4 including the contributions from higher conformal spin partial waves and light meson mass corrections are considered. The CKM matrix elements Vub|V_{ub}|, Vcs|V_{cs}| and Vcd|V_{cd}| are extracted from some relatively well-measured decay channels. A detailed prediction for the branching ratios of heavy to light meson decays is then presented. The resulting predictions for the semileptonic and radiative decay rates of heavy to light mesons (B,Bs,D,Dsπ,K,η,ρ,K,ω,ϕB,B_s,D,D_s \to \pi, K, \eta, \rho, K^*, \omega, \phi) are found to be compatible with the current experimental data and can be tested by more precise experiments at B-factory, LHCb, BEPCII and CLEOc.Comment: 23 pages, 32 figures, 25 tables,published version, minor corrections and references adde

    Ultrasoft contribution to heavy-quark pair production near threshold

    Get PDF
    We compute the third-order correction to the heavy-quark current correlation function due to the emission and absorption of an ultrasoft gluon. Our result supplies a missing contribution to top-quark pair production near threshold and the determination of the bottom quark mass from QCD sum rules.Comment: 10 pages, LaTe

    A Remark on Supersymmetric Bubbles and Spectrum Crossover

    Full text link
    Using an exact expression for the domain wall tension in a supersymmetric model we show that a spectrum crossover takes place in passing from weak to strong coupling. In the weak coupling regime elementary excitations are the lightest states, while in the strong coupling regime solitonic objects of a special type -- bubbles -- assume the role of the lightest states. The crossover occurs at \lambda^2/(4\pi) \sim 0.4.Comment: 6 p., 1 fi

    Directed and Elliptic Flow in Pb+Pb collisions at 40 and 158 AGeV

    Full text link
    Directed and elliptic flow are reported for charged pions and protons as a function of transverse momentum, rapidity, and centrality in 40 and 158 AGeV Pb + Pb collisions. The standard method of correlating particles with an event plane is used. The directed flow of protons is small and shows little variation near to midrapidity, but rises fast towards projectile rapidity in the 40 AGeV data. For most peripheral collisions the flat region becomes negative resulting in v1v_1 changing sign three times. Elliptic flow doesn't seem to change very much from 40 AGeV to 158 AGeV. The difference is smaller than anticipated from the overall energy dependence from AGS to RHIC.Comment: Presented at 16th International Conference on Ultrarelativistic Nucleus-Nucelus Collisions, Quark Matter 2002 (QM 2002), Nantes, France, 18-24 Jul 2002, 4 pages, 3 figure

    Characterization and analysis of azimuthally sensitive correlations

    Full text link
    A unified framework for describing the azimuthal dependence of two-particle correlations in heavy-ion collisions is introduced, together with the methods for measuring the corresponding observables. The generalization to azimuthal correlations between more than two particles is presented.Comment: 7 pages; talk given at Hot Quarks 2004, Taos (NM), July 18-24,200

    Once again on electromagnetic properties of a domain wall interacting with charged fermions

    Get PDF
    The response to a magnetic flux is considered of the vacuum state of charged Dirac fermions interacting with a domain wall made of a neutral spinless field in (3+1) dimensions with the fermion mass having a phase variation across the wall. It is pointed out that due to simple C parity arguments the spontaneous magnetization for this system is necessarily zero, thus invalidating some claims to the contrary in the literature. The cancellation of the spontaneous magnetization is explicitly demonstrated in a particular class of models. The same calculation produces a general formula for the electric charge density induced by the magnetic flux -- an effect previously discussed in the literature for axionic domain walls. The distribution of the induced charge is calculated in specific models.Comment: 15 page
    corecore