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We compute the third-order correction to the heavy-quark current correlation function due to the
emission and absorption of an ultrasoft gluon. Our result supplies a missing contribution to top-quark
pair production near threshold and the determination of the bottom quark mass from QCD sum rules.

© 2008 Elsevier B.V. Open access under CC BY license.
In a previous paper [1] we described the calculation of the
ultrasoft gluon contribution to the correlation function of heavy-
quark vector currents, which constitutes one of the major missing
pieces in perturbative calculations of quarkonium-like systems at
the third order in non-relativistic perturbation theory. That pa-
per presented the result for the residues of the bound-state poles
of the correlation function, which relate to quarkonium decay
constants. (The ultrasoft contribution to the S-wave quarkonium
masses has been known for some time [2].) However, some of the
most interesting physics related to the heavy-quark threshold—the
determination of the bottom quark mass from sum rules [3] and
the top-quark pair-production cross section [4]—requires the cal-
culation of the full energy-dependent correlation function (see also
the reviews [5,6]). In this Letter we provide the result for the ul-
trasoft correction to the full correlation function.

The effective field theory formalism and technical set-up for
this calculation have already been given in [1] and will not be re-
peated in detail here. In brief, we consider the current correlation
function

2(d − 1)Nc G(E) = i

∫
ddx eiEx0 〈0|T [

χ †σ iψ
]
(x)

[
ψ†σ iχ

]
(0)|0〉, (1)

where E = √
s − 2m is small,

√
s is the centre-of-mass energy and

m the heavy-quark pole mass. (d = 4 − 2ε is the space–time di-
mension in dimensional regularization.) The heavy-quark current
ψ†σ iχ is defined in non-relativistic QCD. The (leading) ultrasoft
contribution to G(E) refers to diagrams where one gluon has ultra-
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soft momentum k ∼ E ∼ mv2, while an infinite number of poten-
tial (Coulomb) gluons can be exchanged between the heavy quarks,
promoting the heavy-quark propagators to the Green function of
the Schrödinger operator including the colour Coulomb potential.
Computing Feynman integrals with Coulomb Green functions while
simultaneously regulating all divergences dimensionally to be con-
sistent with fixed-order matching calculations (defined according
to the threshold expansion [7]) is the main challenge of the ul-
trasoft calculation. From the ultrasoft correction to (1), δusG(E)

(Eqs. (8), (9) of [1]), the corresponding correction to the inclusive
heavy-quark production cross section is computed as

[R]us = 12πe2
Q

3

2m2
Im δusG(E), (2)

where R = σQ Q̄ X/σ0 with σ0 = 4πα2
em/(3s) is the usual R-ratio,

and eQ the heavy-quark electric charge in units of the positron
charge.

The calculation of the ultrasoft contribution to the current-
correlation function involves ultraviolet divergences of various
kinds. Divergences in box-type subdiagrams that do not contain
any of the two current operator insertions are subtracted by coun-
terterms related to the renormalization of the potentials in the
effective Lagrangian. Another class of divergences arises from ver-
tex subdiagrams with up to three loops and lines connecting to
one of the current insertions; they are cancelled by the countert-
erms belonging to the non-relativistic heavy-quark current opera-
tors. These divergences have the same structure in the correlation
function and the bound-state residues, and have already been
discussed in [1]. In addition G(E) has overall divergences from
propagator-type diagrams (involving both operator insertions) with
up to five loops, which are not relevant to the bound-state pole
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Fig. 1. Three-loop diagrams generating an overall divergence proportional to α2
s E/ε . Thick lines denote an unstable top-quark propagator, wavy (dashed) lines ultrasoft

(potential) gluons; the square the non-relativistic current insertion. Symmetric versions of the last two diagrams are not displayed.
parameters. After subtraction of subdivergences the overall diver-
gences are polynomial in the external “momentum” E and should
not contribute to the imaginary part (2). However, there is a sub-
tlety for top-quark pair production, which we now explain (see a
related discussion in [8]).

The issue for top quarks is its large decay width Γt ∼ 1.4 GeV,
which happens to be of order of the relevant non-relativistic ener-
gies E . The correct prescription for the calculation of the ultrasoft
correction is to replace E → E + iΓt in all equations [4]. Equiv-
alently, we may consider E to be complex with a finite imagi-
nary part rather than the +iε-prescription for stable quarks. Now,
the ultrasoft calculation yields an overall divergence (arising from
quadratically divergent three-momentum integrals)

[
δusG(E)

]
overall ∝ α2

s

ε
E (3)

from the three-loop diagrams shown in Fig. 1. If E is complex, this
results in a divergence α2

s Γt/ε in the heavy-quark production cross
section (2) that is not cancelled by any counterterm associated
with the heavy-quark currents. A similar overall divergence has
already appeared in NNLO calculations of top-quark pair produc-
tion such as [9], where it arises from two-loop diagrams with both
loops in the potential region as shown in the first diagram in Fig. 2.
The origin and cancellation of such divergences is best understood
in unstable-particle effective field theory [10], which provides a
consistent treatment of finite-width effects beyond the E → E + iΓt

replacement (valid only up to NLO), and includes non-resonant
contributions to physical cross sections, here e+e− → W +W −bb̄,
which do not include the unstable top quark in the final state. In
this framework, the overall ultraviolet divergence αsΓt/ε from the
first diagram in Fig. 2 is cancelled against an infrared divergence
from the second diagram. Note that the second diagram is not
present in non-relativistic QCD or for stable quarks, since all loops
are in the hard region, and that the electroweak self-energy in-
sertion is computed in conventional perturbation theory in the full
standard model. The second diagram is O(αsαw), so the parameter
dependence matches, since Γt ∝ αw , where αw denotes the SU(2)
gauge coupling. A similar cancellation between the overall diver-
gences from Fig. 1 with non-resonant contributions is expected at
NNNLO.

The ultrasoft contribution to the NRQCD correlation function
provides only part of the third-order result for the heavy-quark
pair production cross section near threshold, and is regularization-
and scheme-dependent. Our conventions for dimensional regular-
ization and the counterterms have been specified in [1] and are
chosen to conform with standard conventions for the calculation
of MS-subtracted coefficient functions. With respect to the overall
divergences discussed above, we note that we perform the calcu-
lation of the correlation function (1) with NRQCD for stable quarks
in the complex energy plane at E + iΓt . This corresponds to keep-
ing only the leading width-correction in the effective Lagrangian
for unstable quarks, (iΓt/2)ψ†ψ , in the framework [10]. The 1/ε
poles are then subtracted minimally (MS). The resulting scheme
and scale dependence cancels with other NRQCD contributions to
the correlation function, and matching coefficients, but there is a
left-over dependence proportional to Γt due to the overall diver-
gences discussed above, which cancels with electroweak correc-
tions that are not yet known.
Fig. 2. Cancellation of the overall divergence αs E/ε at NNLO against a partially
“non-resonant” electroweak contribution involving a W b top-quark self energy in-
sertion. Symmetric versions of the last diagram are not displayed.

We are now in the position to present our main result. (The
technical details of the calculation will be explained together with
those of [1] in a separate publication.) We express this in terms
of the dimensionless complex energy variable Ê ≡ E/(mα2

s ), where
Im Ê = Γ̂t = Γt/(mα2

s ), and

λ = C F

2
√

−Ê
, P = ln

(
C F

λ

)
+ γE + ψ(1 − λ), (4)

with C F = 4/3, and ψ(z) ≡ dΓ (z)/dz the ψ-function (ψ ′(z) de-
notes its first derivative). ĜC = (2/3)(1 − 1/λ − 2 P ), used below,
is related to the Coulomb Green function at zero radial distance by
GC = m2αs/(4π)ĜC . The imaginary part of the correlation function
at complex energy involves divergent, logarithmic and finite contri-
butions. We obtained the pole parts in ε and the logarithmic terms
in αs and μ/m in closed form and the remainder numerically.1 We
thus obtain

δusG(E)

= 2m2α4
s

9π2

{[
17iΓ̂t

24
+ 527ĜC

72

]
1

ε2
+

[
17iΓ̂t

12
+ 221ĜC

36

]
1

ε
ln

μ

m

+
[(

19

12
ln 2 − 91

72

)
iΓ̂t +

(
−119

12
ln 2 + 2059

108

)
ĜC

]
1

ε

+
[
−34iΓ̂t

3
− 595ĜC

9

]
ln2 αs +

[
−17iΓ̂t

12
− 833ĜC

36

]
ln2 μ

m

+
[

34iΓ̂t

3
+ 748ĜC

9

]
lnαs ln

μ

m

+
[

2380P 2

27
+

(
272 ln 2

9
− 23483

162
+ 2380

27λ
+ 272

27λ2

)
P

+
(

27λ

2
− 16

3λ

)
ψ ′(1 − λ) + 64

27λ3

+ 4(−1331 + 306 ln 2)

81λ
+ 4(−199 + 114 ln 2)

81λ2

]
lnαs

+
[
−1496P 2

27
+

(
−34 ln 2

3
+ 5065

72
− 1496

27λ
− 136

27λ2

)
P

+
(

8

3λ
− 81λ

8

)
ψ ′(1 − λ) − 32

27λ3

+ 163 − 114 ln 2

27λ2
+ 271 − 51 ln 2

9λ

]
ln

μ

m
+ δus(Ê)

}
. (5)

The double logarithmic and 1/ε pole terms are identical to
those that appear in the result for the wave function at the

1 Dropping the divergent 1/ε pole terms in (5) amounts to MS renormalization.
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Table 1
Value of the non-logarithmic ultrasoft correction Im δus(Ê) for various scaled energies Ê = E/(mα2

s ). Columns refer to different Re Ê from −4.1 to 2.7, rows to five values of
Im Ê = Γ̂t = Γt/(mα2

s ) for given real part

Re Ê\Γ̂t 0.343 0.443 0.543 0.643 0.743 Re Ê\Γ̂t 0.343 0.443 0.543 0.643 0.743

−4.10 2.282 2.790 3.182 3.432 3.521 −0.52 1681. 1352. 1155. 1022. 925.0
−3.90 5.542 6.966 8.247 9.357 10.27 −0.48 1673. 1356. 1163. 1032. 935.4
−3.70 9.255 11.72 14.00 16.07 17.91 −0.44 1620. 1341. 1162. 1037. 942.4
−3.50 13.53 17.18 20.60 23.76 26.62 −0.40 1534. 1311. 1153. 1036. 946.2
−3.30 18.51 23.53 28.26 32.66 36.68 −0.36 1433. 1271. 1138. 1032. 947.1
−3.10 24.40 31.01 37.26 43.08 48.42 −0.32 1332. 1226. 1118. 1024. 945.7
−2.90 31.46 39.97 47.99 55.45 62.28 −0.28 1243. 1180. 1095. 1014. 942.1
−2.70 40.09 50.87 61.00 70.37 78.90 −0.24 1169. 1137. 1072. 1002. 937.1
−2.50 50.87 64.42 77.06 88.66 99.13 −0.20 1112. 1099. 1049. 989.3 931.0
−2.30 64.68 81.65 97.33 111.5 124.2 −0.16 1070. 1065. 1027. 976.4 924.0
−2.10 82.90 104.2 123.6 140.8 155.8 −0.12 1038. 1037. 1007. 963.7 916.7
−1.90 107.8 134.7 158.5 179.1 196.5 −0.08 1015. 1014. 989.0 951.4 909.2
−1.70 143.6 177.5 206.5 230.5 249.8 −0.04 996.8 994.4 972.9 939.9 901.7
−1.50 197.8 240.5 274.9 301.4 320.8 0.00 982.4 978.0 958.7 929.2 894.4
−1.30 285.8 338.2 375.8 400.8 415.8 0.10 955.4 946.6 929.7 905.8 877.4
−1.10 441.4 497.2 527.3 539.5 540.1 0.30 918.9 906.4 890.6 871.7 850.1
−1.00 565.1 612.6 628.2 625.5 612.9 0.50 893.4 880.3 865.3 848.7 830.4
−0.96 627.4 667.2 673.7 662.6 643.4 0.70 874.4 861.5 847.4 832.2 816.0
−0.92 698.6 727.1 721.8 701.1 674.4 0.90 859.8 847.3 834.0 819.9 805.2
−0.88 779.8 792.1 772.3 740.4 705.6 1.10 848.3 836.4 823.8 810.7 797.0
−0.84 871.7 862.0 824.6 780.1 736.6 1.30 839.2 827.8 816.0 803.6 790.9
−0.80 974.9 936.0 877.8 819.6 767.0 1.50 832.2 821.3 810.0 798.3 786.3
−0.76 1089. 1013. 930.7 858.1 796.4 1.70 826.7 816.3 805.5 794.4 783.1
−0.72 1211. 1089. 982.1 894.8 824.3 1.90 822.5 812.5 802.3 791.7 781.0
−0.68 1336. 1164. 1030. 928.8 850.1 2.10 819.5 810.0 800.1 790.1 779.8
−0.64 1458. 1231. 1073. 959.3 873.5 2.30 817.6 808.3 798.9 789.3 779.4
−0.60 1565. 1288. 1109. 985.3 893.9 2.50 816.5 807.6 798.5 789.3 779.8
−0.56 1643. 1329. 1137. 1006. 911.2 2.70 816.2 807.6 798.9 790.0 780.9
origin (Eq. (13) of [1]) under the replacements Γt → 0, ĜC →
K ≡ (8/9)(α3

s /π)|ψC
n (0)|2/(2m2α4

s /(9π2)). By expanding δusG(E)

around the bound-state poles λ = n, we also reproduce the single
logarithmic terms in [1].2 Only the imaginary part of δusG(E) is
needed for the cross section (2), therefore in writing (5) we al-
ready dropped some purely real terms. The imaginary part of the
non-logarithmic correction δus(Ê) is tabulated in Table 1 for a set
of values of the real part (rows) and imaginary part (columns) of Ê
in a range relevant to top-quark pair production. The table can be
used to generate an interpolating function with an accuracy better
than 0.1 in the entire range of the table.3

The new ultrasoft correction has a very large effect on the tt̄
cross section near threshold as illustrated in Fig. 3. Here we adopt
the top quark pole mass mt = 175 GeV, and fix αs = 0.14, which
corresponds to the Bohr radius scale μB = 32.5 GeV. The solid line
in the upper panel of Fig. 3 shows the non-logarithmic contribu-
tion from Im δus(Ê) to [R]us alone, which is seen to be around
+25% in the peak region, in nice agreement with the estimate
from the wave-function calculation [1]. Including the logarithmic
term requires a choice of the scale μ. Since μ is not related to the
scale of αs , but designates a factorization scale that separates the
ultrasoft from hard and potential contributions, we choose the two
values μB and mt to represent a reasonable range. Since the factor-
ization scale dependence is sizable this results in a large range of
[R]us reflected in the two dashed curves in Fig. 3 (upper panel).
We add these two results to the leading order tt̄ cross section
in the lower panel. Our results show that despite the large quark

2 To this end write

δusG(E)
λ→n= an

(n − λ)2
+ bn

n − λ
+ · · · . (6)

The correction to |ψn(0)|2 is then given by (3K/4)(bn + 3an/n).
3 For instance, using Mathematica’s built-in function Interpolation with default

setting.
Fig. 3. Top panel: Ultrasoft correction [R]us to tt̄ production as function of E = √
s −

2mt . Solid: non-logarithmic contribution only. Dashed: total contribution with μ =
μB = 32.6 GeV (upper dashed) and μ = mt = 175 GeV (lower dashed). Parameters:
mt = 175 GeV, Γt = 1.4 GeV, αs = 0.14. Bottom panel: Ultrasoft correction added
to the leading order (LO) cross section, i.e. [R]LO + [R]us . The band is obtained by
varying the scale μ between μB (upper line) to mt (lower line). The solid black line
refers to the LO cross section.
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Table 2
Values of the non-logarithmic ultrasoft correction Im[δus(Ê + iε)] in the continuum (real positive Ê)

Ê Im[δus] Ê Im[δus] Ê Im[δus] Ê Im[δus]
0 979.0 0.70 911.5 2.10 850.5 6.10 908.2
0.05 973.5 0.90 896.9 2.50 845.0 6.80 935.7
0.10 968.7 1.10 884.7 3.10 843.6 8.00 990.0
0.20 958.6 1.30 874.7 3.70 848.0 9.00 1042.5
0.30 948.3 1.50 866.5 4.30 857.8 10.0 1101.1
0.40 938.3 1.70 859.9 4.90 871.3 12.0 1234.8
0.50 928.7 1.90 854.6 5.50 888.0 14.0 1388.3
mass, third-order perturbative corrections from the ultrasoft scale
can have a significantly larger impact on top-quark pair produc-
tion than anticipated. However, it should be kept in mind that the
ultrasoft correction is not physical by itself as is clear from its
factorization scale dependence. (The non-logarithmic term is still
factorization-scheme dependent.) In [11] we combined the ultra-
soft correction reported here with the third-order potential correc-
tion [12] and all other calculated third-order terms and observed a
significant cancellation between the ultrasoft and potential terms.
A final assessment of theoretical uncertainties should therefore be
attempted only once all third-order corrections to the tt̄ cross sec-
tion have been assembled.

The heavy-quark correlation function near threshold is also a
crucial input to the determination of mb from large-moment bot-
tomonium sum rules [13]. The nth moment of the bb̄ production
cross section is defined by

Mn/(10 GeV)2n ≡ 12π2

n!
dn

d(q2)n
Π

(
q2)∣∣∣∣

q2=0
=

∞∫
0

ds

sn+1
Rbb̄(s). (7)

Taking large n, typically n � 4, enhances the sensitivity to mb and
the threshold region, but requires a non-relativistic treatment to
sum corrections of order αs

√
n to all orders in perturbation the-

ory. On the other hand, n cannot be too large, since mb/n, the
typical non-relativistic energy of a bb̄ pair contributing to the nth
moment must be larger than ΛQCD to justify a perturbative com-
putation [14]. To calculate the derivatives of the QCD vector current
correlation function Π(q2), we evaluate the moment integral in (7)
with Rbb̄(s) expressed as a sum over Coulomb resonances and a
continuum for E = √

s − 2mb > 0, which should be dual to the cor-
responding integrated physical bb̄ cross section.

The ultrasoft correction [R]us to the continuum cross section is
obtained from (2) and

Im δusG(E) = lim
Γ →0+ Im δusG(E + iΓ ) (E > 0). (8)

While we have an analytic representation of the logarithmic con-
tributions, see (5), our numerical implementation of the non-
logarithmic term δus(Ê) does not allow us to make the imaginary
part of Ê arbitrarily small. We therefore calculate δusG(E + iΓ ) for
several values of Γ (for given E) down to Γ̂ = 0.01 and obtain
the continuum value by extrapolating to Γ = 0 through a polyno-
mial fit of various orders. By variations of this procedure and by
applying it to the logarithmic terms, where the result for Γ = 0 is
known analytically, we estimate that the relative error in the calcu-
lation of the ultrasoft contribution to the continuum cross section
(real E > 0) is less than 1%. Numbers for the non-logarithmic term
are provided in Table 2.

The sum of the leading-order and ultrasoft contribution to
the moments is given in Table 3 together with the leading-order
one alone for b-quark pole mass mb = 4.95 GeV and renormaliza-
tion/factorization scale μn = 2mb/

√
n. Given the large size of the

ultrasoft term in the tt̄ cross section it may not be surprising that
here we find that the ultrasoft correction is 30% to 80% of the
Table 3
Moments of the bb̄ spectral function for mb = 4.95 GeV. (The moment integral is cut
off at Ê = 20.) The renormalization/factorization scale is taken to be μn = 2mb/

√
n

corresponding to αs(μn) = 0.228, 0.250, 0.267 for n = 6,10,14. The last row shows
the sum of the leading-order moments and the ultrasoft contribution. The leading
order alone is given in the first row for comparison [14]

n 6 10 14

MLO
n 0.134 0.122 0.139

MLO+US
n 0.178 0.190 0.250

leading-order term, putting the perturbative approach into doubt
for the larger moments. (The correction from the non-logarithmic
term alone is even larger, cf. Fig. 3, upper panel.) However, as men-
tioned above, the result for the ultrasoft correction alone should be
regarded with caution, and there is reason for assuming that the
large ultrasoft correction is partially a consequence of MS factor-
ization, such that the true third-order correction is smaller when
all other corrections are added.

To summarize, we evaluated the correction to the vector-
current heavy-quark correlation function from ultrasoft gluon ex-
change, which appears first at NNNLO in the non-relativistic ex-
pansion, and is required for accurate top and bottom quark mass
determinations from the threshold pair production cross section.
The correction turns out to be large even for top quarks, but a def-
inite conclusion on the attainable theoretical precision can only be
drawn once the full NNNLO result, including potential and hard
corrections, is available. A discussion of the sum of all known
NNNLO terms for top quark production can be found in [11].
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