21 research outputs found
The creation of modulated monoclinic aperiodic composites in n-alkane/urea compounds
Citation: Mariette, C., Guerin, L., Rabiller, P., Chen, Y. S., Bosak, A., Popov, A., . . . Toudic, B. (2015). The creation of modulated monoclinic aperiodic composites in n-alkane/urea compounds. Zeitschrift Fur Kristallographie, 230(1), 5-11. doi:10.1515/zkri-2014-1773n-Dodecane/urea is a member of the prototype series of n-alkane/urea inclusion compounds. At room temperature, it presents a quasi-one dimensional liquid-like state for the confined guest molecules within the rigid, hexagonal framework of the urea host. At lower temperatures, we report the existence of two other phases. Below T-c=248 K there appears a phase with rank four superspace group P6(1)22(00 gamma), the one typically observed at room temperature in n-alkane/urea compounds with longer guest molecules. A misfit parameter, defined by the ratio gamma=C-h/C-g (C-host/C-guest), is found to be 0.632 +/- 0.005. Below T-c1=123 K, a monoclinic modulated phase is created with a constant shift along c of the guest molecules in adjacent channels. The maximal monoclinic space group for this structure is P12(1)1(alpha 0 gamma). Analogies and differences with n-heptane/urea, which also presents a monoclinic, modulated low-temperature phase, are discussed
L'Ă©cologie en livres et en images
Pour les enseignants et pour les élèves, de l'école élémentaire à la classe de seconde : des livres, des diapositives et des films permettant de se former et de s'informer sur tous les domaines de l'écologi
Structural phase transition in p-quaterphenyl : a Raman study of the influence of temperature and pressure
International audienc
Effect of Three Types of Exogenous Organic Carbon on Soil Organic Matter and Physical Properties of a Sandy Technosol
Technosols made by covering agricultural soils with coastal sediments need additional organic matter (OM) to be suitable for agricultural use. Climate change will likely increase the frequency and intensity of droughts in several areas. The choice of the nature and quantity of OM to add depends on dose-response curves for soil quality. This study quantifies the influence of three contrasting organic materials (vermicompost (VF), green waste compost (GWC) and dairy manure (DM)) on four soil properties: soil organic carbon, evaporation rate, bulk density and structural stability. Soil was sampled in April and May 2014 in an artificial crop field of the vegetable production basin of Mont Saint-Michel (France) made with sediments from the bay of Mont Saint-Michel in 2013. Increasing the dose of OM increased soil organic carbon from 10 to 45 g C kg(-1) dry soil and increased the porosity and the structural stability, thus decreasing compaction. Increasing the dose of OM also decreased the evaporation rate. VF and DM had similar effects, while those of GWC were weaker. Compared to DM, VF had greater biological stability. Therefore, high OM inputs along with soil decompaction can increase drought resistance by increasing rooting depth and water retention