93 research outputs found

    Ovarian Development of Female-Female Pairs in the Termite, Reticulitermes speratus

    Get PDF
    In the rhinotermitid termite Reticulitermes speratus (Kolbe) (Isoptera: Rhinotermitidae), facultative parthenogenesis is known to occur occasionally and females cooperate with other females to found the colony. To elucidate the ovarian development in these two females, incipient female-female colonies were established under laboratory conditions, and the process of colony development was observed at 0.5, 1.5, 2.5, 3.5, and 7.5 months (stages I–V, respectively) after colony foundation. Ovarian development, vitellogenin gene expression, and juvenile hormone (JH) titers were examined. A precise reproductive cycle in both females was observed, in which the oviposition rate was relatively higher during stages I and II, decreased during stages III and IV, and then increased again at stage V. JH III titer and vitellogenin gene expression changed in parallel throughout the reproductive cycle of these queens. Ovarian maturation and vitellogenesis were similar in both females in a female-female colony at all stages examined, suggesting that no conflicts existed for two females in terms of oviposition

    Two Tryptophans Are Better Than One in Accelerating Electron Flow through a Protein

    Get PDF
    We have constructed and structurally characterized a <i>Pseudomonas aeruginosa</i> azurin mutant <b>Re126WWCu<sup>I</sup></b>, where two adjacent tryptophan residues (W124 and W122, indole separation 3.6–4.1 Å) are inserted between the Cu<sup>I</sup> center and a Re photosensitizer coordinated to the imidazole of H126 (Re<sup>I</sup>(H126)­(CO)<sub>3</sub>(4,7-dimethyl-1,10-phenanthroline)<sup>+</sup>). Cu<sup>I</sup> oxidation by the photoexcited Re label (*Re) 22.9 Å away proceeds with a ∼70 ns time constant, similar to that of a single-tryptophan mutant (∼40 ns) with a 19.4 Å Re–Cu distance. Time-resolved spectroscopy (luminescence, visible and IR absorption) revealed two rapid reversible electron transfer steps, W124 → *Re (400–475 ps, <i>K</i><sub>1</sub> ≅ 3.5–4) and W122 → W124<sup>•+</sup> (7–9 ns, <i>K</i><sub>2</sub> ≅ 0.55–0.75), followed by a rate-determining (70–90 ns) Cu<sup>I</sup> oxidation by W122<sup>•+</sup> ca. 11 Å away. The photocycle is completed by 120 μs recombination. No photochemical Cu<sup>I</sup> oxidation was observed in <b>Re126FWCu<sup>I</sup></b>, whereas in <b>Re126WFCu<sup>I</sup></b>, the photocycle is restricted to the ReH126W124 unit and Cu<sup>I</sup> remains isolated. QM/MM/MD simulations of <b>Re126WWCu<sup>I</sup></b> indicate that indole solvation changes through the hopping process and W124 → *Re electron transfer is accompanied by water fluctuations that tighten W124 solvation. Our finding that multistep tunneling (hopping) confers a ∼9000-fold advantage over single-step tunneling in the double-tryptophan protein supports the proposal that hole-hopping through tryptophan/tyrosine chains protects enzymes from oxidative damage

    Correlation Index-Based Responsible-Enzyme Gene Screening (CIRES), a Novel DNA Microarray-Based Method for Enzyme Gene Involved in Glycan Biosynthesis

    Get PDF
    BACKGROUND: Glycan biosynthesis occurs though a multi-step process that requires a variety of enzymes ranging from glycosyltransferases to those involved in cytosolic sugar metabolism. In many cases, glycan biosynthesis follows a glycan-specific, linear pathway. As glycosyltransferases are generally regulated at the level of transcription, assessing the overall transcriptional profile for glycan biosynthesis genes seems warranted. However, a systematic approach for assessing the correlation between glycan expression and glycan-related gene expression has not been reported previously. METHODOLOGY: To facilitate genetic analysis of glycan biosynthesis, we sought to correlate the expression of genes involved in cell-surface glycan formation with the expression of the glycans, as detected by glycan-recognizing probes. We performed cross-sample comparisons of gene expression profiles using a newly developed, glycan-focused cDNA microarray. Cell-surface glycan expression profiles were obtained using flow cytometry of cells stained with plant lectins. Pearson's correlation coefficients were calculated for these profiles and were used to identify enzyme genes correlated with glycan biosynthesis. CONCLUSIONS: This method, designated correlation index-based responsible-enzyme gene screening (CIRES), successfully identified genes already known to be involved in the biosynthesis of certain glycans. Our evaluation of CIRES indicates that it is useful for identifying genes involved in the biosynthesis of glycan chains that can be probed with lectins using flow cytometry

    Downsizing a human inflammatory protein to a small molecule with equal potency and functionality

    Get PDF
    A significant challenge in chemistry is to rationally reproduce the functional potency of a protein in a small molecule, which is cheaper to manufacture, non-immunogenic, and also both stable and bioavailable. Synthetic peptides corresponding to small bioactive protein surfaces do not form stable structures in water and do not exhibit the functional potencies of proteins. Here we describe a novel approach to growing small molecules with protein-like potencies from a functionally important amino acid of a protein. A 77-residue human inflammatory protein (complement C3a) important in innate immunity is rationally transformed to equipotent small molecules, using peptide surrogates that incorporate a turn-inducing heterocycle with correctly positioned hydrogen-bond-accepting atoms. Small molecule agonists (molecular weigh

    Genes and structure of selected cytokines involved in pathogenesis of psoriasis.

    Full text link

    Remodeling of Glycans Using Glycosyltransferase Genes

    No full text
    Remodeling of glycans on the cell surface is an essential technique to analyze cellular function of lectin-glycan ligand interaction. Here we describe the methods to identify the responsible enzyme (glycosyltransferase) regulating the expression of the glycan of interest and to modulate the glycan expression by overexpressing the glycosyltransferase gene. For the identification of the responsible enzyme, we introduce a new method, CIRES (correlation index-based responsible-enzyme gene screening), that consists of statistical comparison of glycan expression profile obtained by flow cytometry and gene expression profile obtained by DNA microarray

    Orm protein phosphoregulation mediates transient sphingolipid biosynthesis response to heat stress via the Pkh-Ypk and Cdc55-PP2A pathways

    No full text
    Sphingoid intermediates accumulate in response to a variety of stresses, including heat, and trigger cellular responses. However, the mechanism by which stress affects sphingolipid biosynthesis has yet to be identified. Recent studies in yeast suggest tha
    corecore