3,311 research outputs found

    On the Composition of Gauge Structures

    Get PDF
    A formulation for a non-trivial composition of two classical gauge structures is given: Two parent gauge structures of a common base space are synthesized so as to obtain a daughter structure which is fundamental by itself. The model is based on a pair of related connections that take their values in the product space of the corresponding Lie algebras. The curvature, the covariant exterior derivatives and the associated structural identities, all get contributions from both gauge groups. The various induced structures are classified into those whose composition is given just by trivial means, and those which possess an irreducible nature. The pure irreducible piece, in particular, generates a complete super-space of ghosts with an attendant set of super-BRST variation laws, both of which are purely of a geometrical origin.Comment: Few elaborations are added to section 4 and section 5. To be published in Journal of Physics A: Mathematical and General. 21 page

    Multilevel Modulation of a Sensory Motor Circuit during C. elegans Sleep and Arousal

    Get PDF
    Sleep is characterized by behavioral quiescence, homeostasis, increased arousal threshold, and rapid reversibility. Understanding how these properties are encoded by a neuronal circuit has been difficult, and no single molecular or neuronal pathway has been shown to be responsible for the regulation of sleep. Taking advantage of the well-mapped neuronal connections of Caenorhabditis elegans and the sleep-like states in this animal, we demonstrate the changed properties of both sensory neurons and downstream interneurons that mediate sleep and arousal. The ASH sensory neuron displays reduced sensitivity to stimuli in the sleep-like state, and the activity of the corresponding interneurons in ASH’s motor circuit becomes asynchronous. Restoration of interneuron synchrony is sufficient for arousal. The multilevel circuit depression revealed provides an elegant strategy to promote a robust decrease in arousal while allowing for rapid reversibility of the sleep state

    Benchmarks of the full configuration interaction, Monte Carlo shell model, and no-core full configuration methods

    Full text link
    We report no-core solutions for properties of light nuclei with three different approaches in order to assess the accuracy and convergence rates of each method. Full configuration interaction (FCI), Monte Carlo shell model (MCSM) and no core full configuration (NCFC) approaches are solved separately for the ground state energy and other properties of seven light nuclei using the realistic JISP16 nucleon-nucleon interaction. The results are consistent among the different approaches. The methods differ significantly in how the required computational resources scale with increasing particle number for a given accuracy.Comment: 19 pages, 14 figures, 6 table

    How to realize Lie algebras by vector fields

    Full text link
    An algorithm for embedding finite dimensional Lie algebras into Lie algebras of vector fields (and Lie superalgebras into Lie superalgebras of vector fields) is offered in a way applicable over ground fields of any characteristic. The algorithm is illustrated by reproducing Cartan's interpretations of the Lie algebra of G(2) as the Lie algebra that preserves certain non-integrable distributions. Similar algorithm and interpretation are applicable to other exceptional simple Lie algebras, as well as to all non-exceptional simple ones and many non-simple ones, and to many Lie superalgebras.Comment: 17 pages, LaTe

    Communication between oocytes and somatic cells regulates volatile pheromone production in Caenorhabditis elegans

    Get PDF
    Males of the androdioecious species Caenorhabditis elegans are more likely to attempt to mate with and successfully inseminate C. elegans hermaphrodites that do not concurrently harbor sperm. Although a small number of genes have been implicated in this effect, the mechanism by which it arises remains unknown. In the context of the battle of the sexes, it is also unknown whether this effect is to the benefit of the male, the hermaphrodite, or both. We report that successful contact between mature sperm and oocyte in the C. elegans gonad at the start of fertilization causes the oocyte to release a signal that is transmitted to somatic cells in its mother, with the ultimate effect of reducing her attractiveness to males. Changes in hermaphrodite attractiveness are tied to the production of a volatile pheromone, the first such pheromone described in C. elegans

    Two new functions in the WormBase Enrichment Suite

    Get PDF
    Genome-wide experiments routinely generate large amounts of data that can be hard to interpret biologically. A common approach to interpreting these results is to employ enrichment analyses of controlled languages, known as ontologies, that describe various biological parameters such as gene molecular or biological function. In C. elegans, three distinct ontologies, the Gene Ontology (GO), Anatomy Ontology (AO), and the Worm Phenotype Ontology (WPO) are used to annotate gene function, expression and phenotype, respectively (Ashburner et al. 2000; Lee and Sternberg, 2003; Schindelman et al. 2011). Previously, we developed software to test datasets for enrichment of anatomical terms, called the Tissue Enrichment Analysis (TEA) tool (Angeles-Albores and Sternberg, 2016). Using the same hypergeometric statistical method, we extend enrichment testing to include WPO and GO, offering a unified approach to enrichment testing in C. elegans. The WormBase Enrichment Suite can be accessed via a user-friendly interface at http://www.wormbase.org/tools/enrichment/tea/tea.cgi. To validate the tools, we analyzed a previously published extracellular vesicle (EV)-releasing neuron (EVN) signature gene set derived from dissociated ciliated EV neurons (Wang et al. 2015) using WormBase Enrichment Suite based on the WS262 WormBase release. TEA correctly identified the CEM, hook sensillum and IL2 neuron as enriched tissues. The top phenotype associated with the EVN signature was chemosensory behavior. Gene Ontology enrichment analysis showed that cell projection and cell body were the most enriched cellular components in this gene set, followed by the biological processes neuropeptide signaling pathway and vesicle localization further down. The tutorial script used to generate the figure above can be viewed at: https://github.com/dangeles/TissueEnrichmentAnalysis/blob/master/tutorial/Tutorial.ipynb The addition of Gene Enrichment Analysis (GEA) and Phenotype Enrichment Analysis (PEA) to WormBase marks an important step towards a unified set of analyses that can help researchers to understand genomic datasets. These enrichment analyses will allow the community to fully benefit from the data curation ongoing at WormBase

    Tissue enrichment analysis for C. elegans genomics

    Get PDF
    Background: Over the last ten years, there has been explosive development in methods for measuring gene expression. These methods can identify thousands of genes altered between conditions, but understanding these datasets and forming hypotheses based on them remains challenging. One way to analyze these datasets is to associate ontologies (hierarchical, descriptive vocabularies with controlled relations between terms) with genes and to look for enrichment of specific terms. Although Gene Ontology (GO) is available for Caenorhabditis elegans, it does not include anatomical information. Results: We have developed a tool for identifying enrichment of C. elegans tissues among gene sets and generated a website GUI where users can access this tool. Since a common drawback to ontology enrichment analyses is its verbosity, we developed a very simple filtering algorithm to reduce the ontology size by an order of magnitude. We adjusted these filters and validated our tool using a set of 30 gold standards from Expression Cluster data in WormBase. We show our tool can even discriminate between embryonic and larval tissues and can even identify tissues down to the single-cell level. We used our tool to identify multiple neuronal tissues that are down-regulated due to pathogen infection in C. elegans. Conclusions: Our Tissue Enrichment Analysis (TEA) can be found within WormBase, and can be downloaded using Python’s standard pip installer. It tests a slimmed-down C. elegans tissue ontology for enrichment of specific terms and provides users with a text and graphic representation of the results

    Xylem surfactants introduce a new element to the cohesion-tension theory

    Get PDF
    Vascular plants transport water under negative pressure without constantly creating gas bubbles that would disable their hydraulic systems. Attempts to replicate this feat in artificial systems almost invariably result in bubble formation, except under highly controlled conditions with pure water and only hydrophilic surfaces present. In theory, conditions in the xylem should favor bubble nucleation even more: there are millions of conduits with at least some hydrophobic surfaces, and xylem sap is saturated or sometimes supersaturated with atmospheric gas and may contain surface-active molecules that can lower surface tension. So how do plants transport water under negative pressure? Here, we show that angiosperm xylem contains abundant hydrophobic surfaces as well as insoluble lipid surfactants, including phospholipids, and proteins, a composition similar to pulmonary surfactants. Lipid surfactants were found in xylem sap and as nanoparticles under transmission electron microscopy in pores of intervessel pit membranes and deposited on vessel wall surfaces. Nanoparticles observed in xylem sap via nanoparticle-tracking analysis included surfactant-coated nanobubbles when examined by freeze-fracture electron microscopy. Based on their fracture behavior, this technique is able to distinguish between dense-core particles, liquid-filled, bilayer-coated vesicles/liposomes, and gas-filled bubbles. Xylem surfactants showed strong surface activity that reduces surface tension to low values when concentrated as they are in pit membrane pores. We hypothesize that xylem surfactants support water transport under negative pressure as explained by the cohesion-tension theory by coating hydrophobic surfaces and nanobubbles, thereby keeping the latter below the critical size at which bubbles would expand to form embolisms
    corecore