54 research outputs found

    Periostin is up-regulated in high grade and high stage prostate cancer

    Get PDF
    BACKGROUND: Expression of periostin is an indicator of epithelial-mesenchymal transition in cancer but a detailed analysis of periostin expression in prostate cancer has not been conducted so far. METHODS: Here, we evaluated periostin expression in prostate cancer cells and peritumoural stroma immunohistochemically in two independent prostate cancer cohorts, including a training cohort (n = 93) and a test cohort (n = 325). Metastatic prostate cancers (n = 20), hormone refractory prostate cancers (n = 19) and benign prostatic tissues (n = 38) were also analyzed. RESULTS: In total, strong epithelial periostin expression was detectable in 142 of 418 (34.0%) of prostate carcinomas and in 11 of 38 benign prostate glands (28.9%). Increased periostin expression in carcinoma cells was significantly associated with high Gleason score (p < 0.01) and advanced tumour stage (p < 0.05) in the test cohort. Whereas periostin expression was weak or absent in the stroma around normal prostate glands, strong periostin expression in tumour stroma was found in most primary and metastatic prostate cancers. High stromal periostin expression was associated with higher Gleason scores (p < 0.001). There was a relationship between stromal periostin expression and shortened PSA relapse free survival times in the training cohort (p < 0.05). CONCLUSIONS: Our data indicate that periostin up-regulation is related to increased tumour aggressiveness in prostate cancer and might be a promising target for therapeutical interventions in primary and metastatic prostate cancer

    Intratumoral macrophages contribute to epithelial-mesenchymal transition in solid tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several stromal cell subtypes including macrophages contribute to tumor progression by inducing epithelial-mesenchymal transition (EMT) at the invasive front, a mechanism also linked to metastasis. Tumor associated macrophages (TAM) reside mainly at the invasive front but they also infiltrate tumors and in this process they mainly assume a tumor promoting phenotype. In this study, we asked if TAMs also regulate EMT intratumorally. We found that TAMs through TGF-β signaling and activation of the β-catenin pathway can induce EMT in intratumoral cancer cells.</p> <p>Methods</p> <p>We depleted macrophages in F9-teratocarcinoma bearing mice using clodronate-liposomes and analyzed the tumors for correlations between gene and protein expression of EMT-associated and macrophage markers. The functional relationship between TAMs and EMT was characterized <it>in vitro </it>in the murine F9 and mammary gland NMuMG cells, using a conditioned medium culture approach. The clinical relevance of our findings was evaluated on a tissue microarray cohort representing 491 patients with non-small cell lung cancer (NSCLC).</p> <p>Results</p> <p>Gene expression analysis of F9-teratocarcinomas revealed a positive correlation between TAM-densities and mesenchymal marker expression. Moreover, immunohistochemistry showed that TAMs cluster with EMT phenotype cells in the tumors. <it>In vitro</it>, long term exposure of F9-and NMuMG-cells to macrophage-conditioned medium led to decreased expression of the epithelial adhesion protein E-cadherin, activation of the EMT-mediating β-catenin pathway, increased expression of mesenchymal markers and an invasive phenotype. In a candidate based screen, macrophage-derived TGF-β was identified as the main inducer of this EMT-associated phenotype. Lastly, immunohistochemical analysis of NSCLC patient samples identified a positive correlation between intratumoral macrophage densities, EMT markers, intraepithelial TGF-β levels and tumor grade.</p> <p>Conclusions</p> <p>Data presented here identify a novel role for macrophages in EMT-promoted tumor progression. The observation that TAMs cluster with intra-epithelial fibroblastoid cells suggests that the role of macrophages in tumor-EMT extends beyond the invasive front. As macrophage infiltration and pronounced EMT tumor phenotype correlate with increased grade in NSCLC patients, we propose that TAMs also promote tumor progression by inducing EMT locally in tumors.</p

    FoxQ1 Overexpression Influences Poor Prognosis in Non-Small Cell Lung Cancer, Associates with the Phenomenon of EMT

    Get PDF
    BACKGROUND: We determined the expression of forkhead box Q1 (FoxQ1), E-cadherin (E-cad), Mucin 1 (MUC1), vimentin (VIM) and S100 calcium binding protein A4 (S100A4), all epithelial-mesenchymal transition (EMT) indicator proteins in non-small cell lung cancer (NSCLC) tissue samples. We also investigated the relationship between these five proteins expression and other clinicopathologic factors in NSCLC. Finally, we assessed the potential value of these markers as prognostic indicators of survival in NSCLC's patients. METHODS: Quantitative real-time PCR and immunohistochemistry were used to characterize the expression of the FoxQ1 mRNA and protein in NSCLC. Expression of transcripts and translated products for the other four EMT indicator proteins was assessed by immunohistochemistry in the same clinical NSCLC samples. RESULTS: FoxQ1 mRNA and protein were up-regulated in NSCLC compared with normal tissues (P = 0.015 and P<0.001, respectively). Expression of FoxQ1 in adenocarcinoma was higher than in squamous cell carcinoma (P = 0.005), and high expression of FoxQ1 correlated with loss of E-cad expression (P = 0.012), and anomalous positivity of VIM (P = 0.024) and S100A4 (P = 0.004). Additional survival analysis showed that high expression of FoxQ1 (P = 0.047) and E-cad (P = 0.021) were independent prognostic factors. CONCLUSION: FoxQ1 maybe plays a specific role in the EMT of NSCLC, and could be used as a prognostic factor for NSCLC

    Methylation of Wnt7a Is Modulated by DNMT1 and Cigarette Smoke Condensate in Non-Small Cell Lung Cancer

    Get PDF
    Wnt7a is known to be a tumor suppressor that is lost in NSCLC, but no mechanism of loss has been established. Methylation of promoter regions has been established as a common mechanism of loss of tumor suppressor expression in NSCLC. We previously demonstrated that loss of Wnt7a in non-transformed lung epithelial cell lines led to increased cell growth, altered 3-D culture growth, and increased migration. The Wnt7a promoter has a higher percentage of methylation in NSCLC tumor tissue compared to matched normal lung tissue and methylation of the promoter region leads to decreased activity. We treated H157 and H1299 NSCLC cell lines with 5-Aza-2′-deoxycytidine and detected loss of Wnt7a promoter methylation, increased Wnt7a expression, and increased activity of the Wnt7a lung signaling pathway. When DNMT1 expression was knocked down by shRNA, expression of Wnt7a increased and methylation decreased. Together these data suggest that in NSCLC, Wnt7a is lost by methylation in a subset of tumors and that this methylation is maintained by DNMT1. Restoration of Wnt7a expression through demethylation could be an important therapeutic approach in the treatment of NSCLC

    Association between Helicobacter pylori genotypes and severity of chronic gastritis, peptic ulcer disease and gastric mucosal interleukin-8 levels: evidence from a study in the Middle East

    Get PDF
    Background: The varied clinical presentations of Helicobacter pylori (H. pylori) infection are most likely due to differences in the virulence of individual strains, which determines its ability to induce production of interleukin-8 (IL-8) in the gastric mucosa. The aim of this study was to examine association between cagA, vacA-s1 and vacA-s2 genotypes of H. pylori and severity of chronic gastritis and presence of peptic ulcer disease (PUD), and to correlate these with IL-8 levels in the gastric mucosa. Methods: Gastric mucosal biopsies were obtained from patients during esophagogastroduodenoscopy. The severity of chronic gastritis was documented using the updated Sydney system. H. pylori cagA and vacA genotypes were detected by PCR. The IL-8 levels in the gastric mucosa were measured by ELISA. Results: H. pylori cagA and/or vacA genotypes were detected in 99 patients (mean age 38.4±12.9; 72 males), of whom 52.5% were positive for cagA, 44.4% for vacA-s1 and 39.4% for vacA-s2; and 70.7% patients had PUD. The severity of inflammation in gastric mucosa was increased with vacA-s1 (p=0.017) and decreased with vacA-s2 (p=0.025), while cagA had no association. The degree of neutrophil activity was not associated with either cagA or vacA-s1, while vacA-s2 was significantly associated with decreased neutrophil activity (p=0.027). PUD was significantly increased in patients with cagA (p=0.002) and vacA-s1 (p=0.031), and decreased in those with vacA-s2 (p=0.011). The level of IL-8 was significantly increased in patients with cagA (p=0.011) and vacA-s1 (p=0.024), and lower with vacA-s2 (p=0.004). Higher levels of IL-8 were also found in patients with a more severe chronic inflammation (p=0.001), neutrophil activity (p=0.007) and those with PUD (p=0.001). Conclusions: Presence of vacA-s1 genotype of H. pylori is associated with more severe chronic inflammation and higher levels of IL-8 in the gastric mucosa, as well as higher frequency of PUD. Patients with vacA-s2 have less severe gastritis, lower levels of IL-8, and lower rates of PUD. The presence of cagA genotype is not associated with the severity of gastritis or IL-8 induction in the gastric mucosa. The association of cagA with PUD may be a reflection of its presence with vacA-s1 genotype
    • …
    corecore