779 research outputs found

    Sulfatide mediates attachment of Pseudomonas aeruginosa to human pharyngeal epithelial cells

    Get PDF
    Pseudomonas aeruginosa infections are particularly common in people with cystic fibrosis and despite regular treatment with antibiotics, lung damage due to chronic infection with P. aeruginosa remains the major cause of death in those patients. In order to initiate an infection, P. aeruginosa needs contact with the respiratory epithelial surface and by means of its adhesins i.e., fimbria, hemagglutinins,etc., it recognizes and adheres to the corresponding epithelial receptors. We treated P. aeruginosa strains isolated from sputum of cystic fibrosis patients with several glycolipids such as sulfatide, sulfated ganglioside mixture (GM1a, GD1b, GT1b), asialo-GM1 and galactocerebrosides to determine their effect on attachment with pharyngeal epithelial cells. Sulfated ganglioside mixture and sulfatide inhibited the attachment of P. aeruginosa significantly, whereas asialo-GM1, Gal-Cer and sodium sulfite had no effect on attachment inhibition. This finding suggests that sulfated glycoconjugates found in the extracellular matrix, in mucus and on the surface of epithelial cells of human trachea and lung mediates attachment of P. aeruginosa

    Pseudo-unitary symmetry and the Gaussian pseudo-unitary ensemble of random matrices

    Full text link
    Employing the currently discussed notion of pseudo-Hermiticity, we define a pseudo-unitary group. Further, we develop a random matrix theory which is invariant under such a group and call this ensemble of pseudo-Hermitian random matrices as the pseudo-unitary ensemble. We obtain exact results for the nearest-neighbour level spacing distribution for (2 X 2) PT-symmetric Hamiltonian matrices which has a novel form, s log (1/s) near zero spacing. This shows a level repulsion in marked distinction with an algebraic form in the Wigner surmise. We believe that this paves way for a description of varied phenomena in two-dimensional statistical mechanics, quantum chromodynamics, and so on.Comment: 9 pages, 2 figures, LaTeX, submitted to the Physical Review Letters on August 20, 200

    Role of quantum coherence in chromophoric energy transport

    Get PDF
    The role of quantum coherence and the environment in the dynamics of excitation energy transfer is not fully understood. In this work, we introduce the concept of dynamical contributions of various physical processes to the energy transfer efficiency. We develop two complementary approaches, based on a Green's function method and energy transfer susceptibilities, and quantify the importance of the Hamiltonian evolution, phonon-induced decoherence, and spatial relaxation pathways. We investigate the Fenna-Matthews-Olson protein complex, where we find a contribution of coherent dynamics of about 10% and of relaxation of 80%.Comment: 5 pages, 3 figures, included static disorder, correlated environmen

    Action Recognition from a Single Web Image Based on an Ensemble of Pose Experts

    Full text link
    Abstract. In this paper, we present a new method which estimates the pose of a human body and identifies its action from one single static image. This is a challenging task due to the high degrees of freedom of body poses and lack of any motion cues. Specifically, we build a pool of pose experts, each of which individually models a particular type of articulation for a group of human bodies with similar poses or semantics (actions). We investigate two ways to construct these pose experts and show that this method leads to improved pose estimation performance under difficult conditions. Furthermore, in contrast to previous wisdoms of combining the output of each pose expert for action recognition using such method as majority voting, we propose a flexible strategy which adaptively integrates them in a discriminative framework, allowing each pose expert to adjust their roles in action prediction according to their specificity when facing different action types. In particular, the spatial re-lationship between estimated part locations from each expert is encoded in a graph structure, capturing both the non-local and local spatial corre-lation of the body shape. Each graph is then treated as a separate group, on which an overall group sparse constraint is imposed to train the pre-diction model, with extra weight added according to the confidence of the corresponding expert. We show in our experiments on a challenging web data set with state of the art results that our method effectively improves the tolerance of our system to imperfect pose estimation.

    NQO2 is a reactive oxygen species generating off-target for acetaminophen

    Get PDF
    [Image: see text] The analgesic and antipyretic compound acetaminophen (paracetamol) is one of the most used drugs worldwide. Acetaminophen overdose is also the most common cause for acute liver toxicity. Here we show that acetaminophen and many structurally related compounds bind quinone reductase 2 (NQO2) in vitro and in live cells, establishing NQO2 as a novel off-target. NQO2 modulates the levels of acetaminophen derived reactive oxygen species, more specifically superoxide anions, in cultured cells. In humans, NQO2 is highly expressed in liver and kidney, the main sites of acetaminophen toxicity. We suggest that NQO2 mediated superoxide production may function as a novel mechanism augmenting acetaminophen toxicity

    Exploiting inflammation for therapeutic gain in pancreatic cancer

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy associated with <5% 5-year survival, in which standard chemotherapeutics have limited benefit. The disease is associated with significant intra- and peritumoral inflammation and failure of protective immunosurveillance. Indeed, inflammatory signals are implicated in both tumour initiation and tumour progression. The major pathways regulating PDAC-associated inflammation are now being explored. Activation of leukocytes, and upregulation of cytokine and chemokine signalling pathways, both have been shown to modulate PDAC progression. Therefore, targeting inflammatory pathways may be of benefit as part of a multi-target approach to PDAC therapy. This review explores the pathways known to modulate inflammation at different stages of tumour development, drawing conclusions on their potential as therapeutic targets in PDAC
    corecore