197 research outputs found

    Tensor models and hierarchy of n-ary algebras

    Get PDF
    Tensor models are generalization of matrix models, and are studied as models of quantum gravity. It is shown that the symmetry of the rank-three tensor models is generated by a hierarchy of n-ary algebras starting from the usual commutator, and the 3-ary algebra symmetry reported in the previous paper is just a single sector of the whole structure. The condition for the Leibnitz rules of the n-ary algebras is discussed from the perspective of the invariance of the underlying algebra under the n-ary transformations. It is shown that the n-ary transformations which keep the underlying algebraic structure invariant form closed finite n-ary Lie subalgebras. It is also shown that, in physical settings, the 3-ary transformation practically generates only local infinitesimal symmetry transformations, and the other more non-local infinitesimal symmetry transformations of the tensor models are generated by higher n-ary transformations.Comment: 13 pages, some references updated and correcte

    Uniqueness of canonical tensor model with local time

    Get PDF
    Canonical formalism of the rank-three tensor model has recently been proposed, in which "local" time is consistently incorporated by a set of first class constraints. By brute-force analysis, this paper shows that there exist only two forms of a Hamiltonian constraint which satisfies the following assumptions: (i) A Hamiltonian constraint has one index. (ii) The kinematical symmetry is given by an orthogonal group. (iii) A consistent first class constraint algebra is formed by a Hamiltonian constraint and the generators of the kinematical symmetry. (iv) A Hamiltonian constraint is invariant under time reversal transformation. (v) A Hamiltonian constraint is an at most cubic polynomial function of canonical variables. (vi) There are no disconnected terms in a constraint algebra. The two forms are the same except for a slight difference in index contractions. The Hamiltonian constraint which was obtained in the previous paper and behaved oddly under time reversal symmetry can actually be transformed to one of them by a canonical change of variables. The two-fold uniqueness is shown up to the potential ambiguity of adding terms which vanish in the limit of pure gravitational physics.Comment: 21 pages, 12 figures. The final result unchanged. Section 5 rewritten for clearer discussions. The range of uniqueness commented in the final section. Some other minor correction

    The fluctuation spectra around a Gaussian classical solution of a tensor model and the general relativity

    Full text link
    Tensor models can be interpreted as theory of dynamical fuzzy spaces. In this paper, I study numerically the fluctuation spectra around a Gaussian classical solution of a tensor model, which represents a fuzzy flat space in arbitrary dimensions. It is found that the momentum distribution of the low-lying low-momentum spectra is in agreement with that of the metric tensor modulo the general coordinate transformation in the general relativity at least in the dimensions studied numerically, i.e. one to four dimensions. This result suggests that the effective field theory around the solution is described in a similar manner as the general relativity.Comment: 29 pages, 13 figure

    An invariant approach to dynamical fuzzy spaces with a three-index variable

    Full text link
    A dynamical fuzzy space might be described by a three-index variable C_{ab}^c, which determines the algebraic relations f_a f_b =C_{ab}^c f_c among the functions f_a on the fuzzy space. A fuzzy analogue of the general coordinate transformation would be given by the general linear transformation on f_a. I study equations for the three-index variable invariant under the general linear transformation, and show that the solutions can be generally constructed from the invariant tensors of Lie groups. As specific examples, I study SO(3) symmetric solutions, and discuss the construction of a scalar field theory on a fuzzy two-sphere within this framework.Comment: Typos corrected, 12 pages, 8 figures, LaTeX, JHEP clas

    Field theory on evolving fuzzy two-sphere

    Full text link
    I construct field theory on an evolving fuzzy two-sphere, which is based on the idea of evolving non-commutative worlds of the previous paper. The equations of motion are similar to the one that can be obtained by dropping the time-derivative term of the equation derived some time ago by Banks, Peskin and Susskind for pure-into-mixed-state evolutions. The equations do not contain an explicit time, and therefore follow the spirit of the Wheeler-de Witt equation. The basic properties of field theory such as action, gauge invariance and charge and momentum conservation are studied. The continuum limit of the scalar field theory shows that the background geometry of the corresponding continuum theory is given by ds^2 = -dt^2+ t d Omega^2, which saturates locally the cosmic holographic principle.Comment: Typos corrected, minor changes, 23 pages, no figures, LaTe

    Tensor model and dynamical generation of commutative nonassociative fuzzy spaces

    Get PDF
    Rank-three tensor model may be regarded as theory of dynamical fuzzy spaces, because a fuzzy space is defined by a three-index coefficient of the product between functions on it, f_a*f_b=C_ab^cf_c. In this paper, this previous proposal is applied to dynamical generation of commutative nonassociative fuzzy spaces. It is numerically shown that fuzzy flat torus and fuzzy spheres of various dimensions are classical solutions of the rank-three tensor model. Since these solutions are obtained for the same coupling constants of the tensor model, the cosmological constant and the dimensions are not fundamental but can be regarded as dynamical quantities. The symmetry of the model under the general linear transformation can be identified with a fuzzy analog of the general coordinate transformation symmetry in general relativity. This symmetry of the tensor model is broken at the classical solutions. This feature may make the model to be a concrete finite setting for applying the old idea of obtaining gravity as Nambu-Goldstone fields of the spontaneous breaking of the local translational symmetry.Comment: Adding discussions on effective geometry, a note added, four references added, other minor changes, 27 pages, 17 figure

    The lowest modes around Gaussian solutions of tensor models and the general relativity

    Full text link
    In the previous paper, the number distribution of the low-lying spectra around Gaussian solutions representing various dimensional fuzzy tori of a tensor model was numerically shown to be in accordance with the general relativity on tori. In this paper, I perform more detailed numerical analysis of the properties of the modes for two-dimensional fuzzy tori, and obtain conclusive evidences for the agreement. Under a proposed correspondence between the rank-three tensor in tensor models and the metric tensor in the general relativity, conclusive agreement is obtained between the profiles of the low-lying modes in a tensor model and the metric modes transverse to the general coordinate transformation. Moreover, the low-lying modes are shown to be well on a massless trajectory with quartic momentum dependence in the tensor model. This is in agreement with that the lowest momentum dependence of metric fluctuations in the general relativity will come from the R^2-term, since the R-term is topological in two dimensions. These evidences support the idea that the low-lying low-momentum dynamics around the Gaussian solutions of tensor models is described by the general relativity. I also propose a renormalization procedure for tensor models. A classical application of the procedure makes the patterns of the low-lying spectra drastically clearer, and suggests also the existence of massive trajectories.Comment: 31 pages, 8 figures, Added references, minor corrections, a misleading figure replace

    Exact Free Energies of Statistical Systems on Random Networks

    Get PDF
    Statistical systems on random networks can be formulated in terms of partition functions expressed with integrals by regarding Feynman diagrams as random networks. We consider the cases of random networks with bounded but generic degrees of vertices, and show that the free energies can be exactly evaluated in the thermodynamic limit by the Laplace method, and that the exact expressions can in principle be obtained by solving polynomial equations for mean fields. As demonstrations, we apply our method to the ferromagnetic Ising models on random networks. The free energy of the ferromagnetic Ising model on random networks with trivalent vertices is shown to exactly reproduce that of the ferromagnetic Ising model on the Bethe lattice. We also consider the cases with heterogeneity with mixtures of orders of vertices, and derive the known formula of the Curie temperature

    A Cooper pair light emitting diode

    Get PDF
    We demonstrate Cooper-pair's drastic enhancement effect on band-to-band radiative recombination in a semiconductor. Electron Cooper pairs injected from a superconducting electrode into an active layer by the proximity effect recombine with holes injected from a p-type electrode and dramatically accelerate the photon generation rates of a light emitting diode in the optical-fiber communication band. Cooper pairs are the condensation of electrons at a spin-singlet quantum state and this condensation leads to the observed enhancement of the electric-dipole transitions. Our results indicate the possibility to open up new interdisciplinary fields between superconductivity and optoelectronics.Comment: 5 pages (4 figures
    corecore